I am trying to run a wavelet reconstruction dataset through a sequential Keras neural network. In order to get better results from the training, I am trying to construct a custom loss function that only focuses on certain indices of the waveform. I intend to create a neural network that will interpolate clipped waveforms, so I just want the neural network to calculate loss by comparing the clipped segments of the waveform to the actual output.
I have already tried creating a wrapper for my custom loss function so that I can pass in an additional inputs parameter. I then use this inputs parameter to find the indices of the clipped datapoints and attempt to gather those indices from y_pred and y_true.
This is where the model is instantiated and trained:
x_train, x_test, y_train, y_test = train_test_split(X, Y, train_size=0.7)
_dim = len(x_train[0])
# define the keras model
model = Sequential()
# tanh activation allows for vals between -1 and 1 unlike relu
model.add(Dense(_dim*2, input_dim=_dim, activation=_activation))
model.add(Dense(_dim*2, activation=_activation))
model.add(Dense(_dim, activation=_activation))
# model.compile(loss=_loss, optimizer=_optimizer)
model.compile(loss=_loss, optimizer=_optimizer, metrics=[custom_loss_wrapper_2(x_train)])
print(model.summary())
# The patience parameter is the amount of epochs to check for improvement
early_stop = EarlyStopping(monitor='val_loss', patience=5)
# fit the model
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=150, batch_size=15, callbacks=[early_stop])
And this is where my custom loss function is:
def custom_loss_wrapper_2(inputs):
# source: https://stackoverflow.com/questions/55445712/custom-loss-function-in-keras-based-on-the-input-data
# 2nd source: http://stackoverflow.com/questions.55597335/how-to-use-tf-gather-in-batch
def reindex(tensor_tuple):
# unpack tensor tuple
y_true = tensor_tuple[0]
y_pred = tensor_tuple[1]
t_inputs = K.cast(tensor_tuple[2], dtype='int64')
t_max_indices = K.tf.where(K.tf.equal(t_inputs, K.max(t_inputs)))
# gather the values from y_true and y_pred
y_true_gathered = K.gather(y_true, t_max_indices)
y_pred_gathered = K.gather(y_pred, t_max_indices)
print(K.mean(K.square(y_true_gathered - y_pred_gathered)))
return K.mean(K.square(y_true_gathered - y_pred_gathered))
def custom_loss(y_true, y_pred):
# Step 1: "tensorize" the previous list
t_inputs = K.variable(inputs)
# Step 2: Stack tensors
tensor_tuple = K.stack([y_true, y_pred, t_inputs], axis=1)
vals = K.map_fn(reindex, tensor_tuple, dtype='float32')
print('vals: ', vals)
return K.mean(vals)
return custom_loss
I am getting the following error message for one of my attempts at a custom loss function:
Using TensorFlow backend.
WARNING: Logging before flag parsing goes to stderr.
W0722 15:28:20.239395 17232 deprecation_wrapper.py:119] From C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\backend\tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
W0722 15:28:20.252325 17232 deprecation_wrapper.py:119] From C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\backend\tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
W0722 15:28:20.253353 17232 deprecation_wrapper.py:119] From C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\backend\tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
W0722 15:28:20.280281 17232 deprecation_wrapper.py:119] From C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
W0722 15:28:20.293246 17232 deprecation_wrapper.py:119] From C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\backend\tensorflow_backend.py:1521: The name tf.log is deprecated. Please use tf.math.log instead.
W0722 15:28:20.366046 17232 deprecation.py:323] From C:\Users\Madison\PycharmProjects\MSTS\Seismic_Analysis\ML\custom_loss.py:83: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
Tensor("metrics/custom_loss/map/while/Mean:0", shape=(), dtype=float32)
vals: Tensor("metrics/custom_loss/map/TensorArrayStack/TensorArrayGatherV3:0", shape=(1228,), dtype=float32)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 1002) 503004
_________________________________________________________________
dense_2 (Dense) (None, 1002) 1005006
_________________________________________________________________
dense_3 (Dense) (None, 501) 502503
=================================================================
Total params: 2,010,513
Trainable params: 2,010,513
Non-trainable params: 0
_________________________________________________________________
None
W0722 15:28:20.467779 17232 deprecation_wrapper.py:119] From C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\backend\tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead.
Train on 1228 samples, validate on 527 samples
Epoch 1/150
2019-07-22 15:28:20.606792: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
Traceback (most recent call last):
File "C:/Users/Madison/PycharmProjects/MSTS/Seismic_Analysis/ML/clipping_ml.py", line 172, in <module>
main()
File "C:/Users/Madison/PycharmProjects/MSTS/Seismic_Analysis/ML/clipping_ml.py", line 168, in main
run_general()
File "C:/Users/Madison/PycharmProjects/MSTS/Seismic_Analysis/ML/clipping_ml.py", line 156, in run_general
_loss=_loss, _activation=_activation, _optimizer=_optimizer)
File "C:/Users/Madison/PycharmProjects/MSTS/Seismic_Analysis/ML/clipping_ml.py", line 59, in build_clipping_model
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=150, batch_size=15, callbacks=[early_stop])
File "C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\engine\training.py", line 1039, in fit
validation_steps=validation_steps)
File "C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\engine\training_arrays.py", line 199, in fit_loop
outs = f(ins_batch)
File "C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\backend\tensorflow_backend.py", line 2715, in __call__
return self._call(inputs)
File "C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\keras\backend\tensorflow_backend.py", line 2675, in _call
fetched = self._callable_fn(*array_vals)
File "C:\Users\Madison\PycharmProjects\MSTS\venv\lib\site-packages\tensorflow\python\client\session.py", line 1458, in __call__
run_metadata_ptr)
tensorflow.python.framework.errors_impl.**InvalidArgumentError: Shapes of all inputs must match**: values[0].shape = [15,501] != values[2].shape = [1228,501]
[[{{node metrics/custom_loss/stack}}]]