I am having issues with my code running out of memory on large data sets. I attempted to chunk the data to feed it into the calculation graph but I eventually get an out of memory error. Would setting it up to use the feed_dict functionality get around this problem?
My code is set up like the following, with a nested map_fn function due to a result of the tf_itertools_product_2D_nest
function.
tf_itertools_product_2D_nest
function is from Cartesian Product in Tensorflow
I also tried a variation where I made a list of tensor-lists which was significantly slower than doing it purely in tensorflow so I'd prefer to avoid that method.
import tensorflow as tf
import numpy as np
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.9
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
tensorboard_log_dir = "../log/"
def tf_itertools_product_2D_nest(a,b): #does not work on nested tensors
a, b = a[ None, :, None ], b[ :, None, None ]
#print(sess.run(tf.shape(a)))
#print(sess.run(tf.shape(b)))
n_feat_dimension_in_common = tf.shape(a)[-1]
c = tf.concat( [ a + tf.zeros_like( b ), tf.zeros_like( a ) + b ], axis = 2 )
return c
def do_calc(arr_pair):
arr_1 = arr_pair[0]
arr_binary = arr_pair[1]
return tf.reduce_max(tf.cumsum(arr_1*arr_binary))
def calc_row_wrapper(row):
return tf.map_fn(do_calc,row)
for i in range(0,10):
a = tf.constant(np.random.random((7,10))*10,tf.float64)
b = tf.constant(np.random.randint(2, size=(3,10)),tf.float64)
a_b_itertools_product = tf_itertools_product_2D_nest(a,b)
'''Creates array like this:
[ [[arr_a0,arr_b0], [arr_a1,arr_b0],...],
[[arr_a0,arr_b1], [arr_a1,arr_b1],...],
[[arr_a0,arr_b2], [arr_a1,arr_b2],...],
...]
'''
with tf.summary.FileWriter(tensorboard_log_dir, sess.graph) as writer:
result_array = sess.run(tf.map_fn(calc_row_wrapper,a_b_itertools_product),
options=run_options,run_metadata=run_metadata)
writer.add_run_metadata(run_metadata,"iteration {}".format(i))
print(result_array.shape)
print(result_array)
print("")
# result_array should be an array with 3 rows (1 for each binary vector in b) and 7 columns (1 for each row in a)
I can imagine that is unnecessarily consuming memory due to the extra dimension added. Is there a way to mimic the outcome of the standard itertools.product()
function to output 1 long list of every possible combination of items in the 2 input iterables? Like the result of:
itertools.product([[1,2],[3,4]],[[5,6],[7,8]])
# [([1, 2], [5, 6]), ([1, 2], [7, 8]), ([3, 4], [5, 6]), ([3, 4], [7, 8])]
That would eliminate the need to call map_fn
twice.
When map_fn is called within a loop as my code shows, will it keep spawning graphs for every iteration? There appears to be a big "map_" node for every iteration cycle in this code's Tensorboardgraph.
Tensorboard Default View (not enough reputation yet)
When I select a particular iteration based on the tag in Tensorboard, only the map node corresponding to the iteration is highlighted with all the others grayed out. Does that mean that for that cycle only the map node for that cycle is present (and the others no longer, if from a previous cycle , exist in memory)?