I have a numpy array of shape n x d. Each row represents a point in R^d. I want to filter this array to only rows within a given distance on each axis of a single point--a d-dimensional hypercube, as it were.
In 1 dimension, this could be:
array[np.which(array < lmax and array > lmin)]
where lmax and lmin are the max and min relevant to the point+-distance. But I want to do this in d dimensions. d is not fixed, so hard-coding it out doesn't work. I checked to see if the above works where lmax and lmin are d-length vectors, but it just flattens the array.
I know I could plug the matrix and the point into a distance calculator like scipy.spatial.distance and get some sort of distance metric, but that's likely slower than some simple filtering (if it exists) would be.
The fact I have to do this calculation potentially millions of times means Ideally I'd like a fast solution.