For a network architecture like this:
+---+
input1--->| CNN | -------|
+---+ |
|
+---+ +-------+ +-------+
input2--->| CNN | ----| Concat|-----|----| VGG |---- Main_out
+---+ +-------+ | +-------+
| |
+---+ | |
input3--->| CNN | --------| Aux_out
+---+
How does the backpropagation flow go? I mean, there are two backpropagation steps? Or the only one that comes from the Main_out
updates the weights.
I am using loss weights for each output:
model.compile(loss="categorical_crossentropy",optimizer=OPT,metrics=["accuracy"],
loss_weights={'main_output': 1., 'aux_output': 0.2}