Simple example below using minmaxscaler, polyl features and linear regression classifier.
doing via pipeline:
pipeLine = make_pipeline(MinMaxScaler(),PolynomialFeatures(), LinearRegression())
pipeLine.fit(X_train,Y_train)
print(pipeLine.score(X_test,Y_test))
print(pipeLine.steps[2][1].intercept_)
print(pipeLine.steps[2][1].coef_)
0.4433729905419167
3.4067909278765605
[ 0. -7.60868833 5.87162697]
doing manually:
X_trainScaled = MinMaxScaler().fit_transform(X_train)
X_trainScaledandPoly = PolynomialFeatures().fit_transform(X_trainScaled)
X_testScaled = MinMaxScaler().fit_transform(X_test)
X_testScaledandPoly = PolynomialFeatures().fit_transform(X_testScaled)
reg = LinearRegression()
reg.fit(X_trainScaledandPoly,Y_train)
print(reg.score(X_testScaledandPoly,Y_test))
print(reg.intercept_)
print(reg.coef_)
print(reg.intercept_ == pipeLine.steps[2][1].intercept_)
print(reg.coef_ == pipeLine.steps[2][1].coef_)
0.44099256691782807
3.4067909278765605
[ 0. -7.60868833 5.87162697]
True
[ True True True]