When creating a dataframe using read_csv(), na-like values (like the string 'NA') are coerced to NaN. In the below example, I am instead creating a dataframe using DataFrame() on a dict, and the string 'NA' is preserved. How can I re-evaluate this dataframe so that this (and any other na-like values) are converted to NaN?
from collections import OrderedDict
test = OrderedDict([('totalSize', 82142),
('done', True),
('records',
[OrderedDict([('Name', 'ASST SANTI PAOLO E CARLO'),
('BillingStreet', 'NA'),
('BillingCity', 'MILANO'),
('BillingState', 'MI'),
('BillingPostalCode', '20142'),
('BillingCountry', 'ITALY')]),
OrderedDict([('Name',
'A O UNIVERSITARIA OSPEDALI RIUNITI TRIESTE'),
('BillingStreet', 'VIA FARNETO 3'),
('BillingCity', 'TRIESTE'),
('BillingState', None),
('BillingPostalCode', '34142'),
('BillingCountry', 'ITALY')])])])
testdf = pd.DataFrame(test['records'])