I am interested in performing multiple tests for a single variable with an associated factor that split the values into multiple groups. It is related to this question and, actually, I would like to get a solution of that kind but it is not exactly the same.
In my case, I have a single variable and multiple groups (eventually many). Expanding on this example:
library(reshape)
# Create a dataset
mu=34
stdv=5
Location=rep(c("Area_A","Area_B","Area_C"),5)
distro=rnorm(length(Location),mu,stdv)
id=seq(1:length(Location))
sample_long=data.frame(id,Location,distro)
sample_long
id Location distro
1 1 Area_A 34.95737
2 2 Area_B 31.30298
3 3 Area_C 35.86569
4 4 Area_A 40.45378
5 5 Area_B 36.12060
6 6 Area_C 28.29649
7 7 Area_A 30.64495
8 8 Area_B 29.70668
9 9 Area_C 33.22874
10 10 Area_A 25.29148
11 11 Area_B 32.35511
12 12 Area_C 34.69159
13 13 Area_A 26.89791
14 14 Area_B 35.30717
15 15 Area_C 40.64628
I would like to perform all-against-all tests among Areas, i.e. test(Area_A,Area_B), test(Area_A,Area_C) and test(Area_B,Area_C) (in a more general case, all the i<j
possible tests).
A simple way to go is to transform the data into wide format:
# Reshape to wide format
sample_wide=reshape(sample_long,direction="wide",idvar="id",timevar="Location")
sample_wide
id distro.Area_A distro.Area_B distro.Area_C
1 1 34.95737 NA NA
2 2 NA 31.30298 NA
3 3 NA NA 35.86569
4 4 40.45378 NA NA
5 5 NA 36.12060 NA
6 6 NA NA 28.29649
7 7 30.64495 NA NA
8 8 NA 29.70668 NA
9 9 NA NA 33.22874
10 10 25.29148 NA NA
11 11 NA 32.35511 NA
12 12 NA NA 34.69159
13 13 26.89791 NA NA
14 14 NA 35.30717 NA
15 15 NA NA 40.64628
and then loop across all-against-all columns, for which I've seen several approximations more R-like than the following one in which I'm using for loops:
# Now compute the test
test.out=list()
k=0
for(i in 2:(dim(sample_wide)[2]-1)){ # All against all var groups
for(j in (i+1):dim(sample_wide)[2]){
k=k+1
test.out[[k]]=t.test(sample_wide[,i],
sample_wide[,j]) # store results in a list
}
}
But my question is not about which is the best solution given the wide format, but whether it is possible to find a solution for the problem working from the original long format, in line with the solutions found for the links I provided above that use dplyr
, broom
, etc.