I use a TensorFlow canned estimator (LinearClassifier
) to predict game actions from situations favourizing best scores. Scores are included in train_data
and used as weight and passed as weight column in the estimator.
I know weight values are multiplicated with loss (MSE in this case) but I want to know if loss minimization is done or if I have to define optimizer as:
optimizer=tf.train.AdamOptimizer(learning_rate=0.001, beta1= 0.9,beta2=0.99, epsilon = 1e-08,use_locking=False).minimize(loss),
model = tf.estimator.LinearClassifier(feature_columns=feature_columns,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001, beta1= 0.9,beta2=0.99, epsilon = 1e-08,use_locking=False),
weight_column=weights,
# dropout=0.1,
# activation_fn=tf.nn.softmax,
n_classes=10,
label_vocabulary=Action_vocab,
model_dir='./Models/ActionPlayerModel20/',
loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE,
config=tf.estimator.RunConfig().replace(save_summary_steps=10))