I work in Freight shipping, and I recently built a scraper that scraped market rates of shipments based on 3 features: origin city, destination city, and time period.
Currently, I have these results stored in a csv/xlsx file that has this data outlined as follows:
My current project involves comparing what we actually paid for shipments versus the going market rate. From my scraped data, I need a way to rapidly access the:
AVERAGE MARKET RATE
based on: MONTH, ORIGIN CITY, and DESTINATION CITY.
Since I know what we paid for shipping on a particular day, if I can access the average market rate from that month, I can perform a simple subtraction to tell us how much we over or underpaid.
I am relatively proficient with using Pandas dataframes, and my first instincts were to try to combine a dataframe with a dictionary to call values based on those features, but I am unsure of how I can do that exactly.
Do you have any ideas?