Kernel threads (also called lightweight process) are handeled by the system. They offer several interesting benefits, the main one being that two threads can be scheduled on two different processors in the hope that this will reduce the execution time of your process.
However threads are often used as a programming model. A typical example is a multi-client webserver that waits for incoming connexion and simultaneously exchange data with its connected clients. In this case the programmer may want to create a lot of threads and switch between them very quickly. System threads are not very adapted to this. The number of kernel threads is limited (to few undreads) and any basic operation (creation destruction switching locking) is costly since it must be executed in kernel space.
The user threads on the other hand, can be implemented using set_jmp()
and long_jmp()
inside a user library. Since they don't involve the kernel an application can create/destroy and switch between user threads very efficiently.
As Ernest said, user threads are not very common any more, however there exists a hybrid solution that can take advantages of the two worlds.
http://en.wikipedia.org/wiki/Thread_(computer_science)#N:M_.28Hybrid_threading.29