I'm trying to check if a file on a jffs2
fs exist from a kernel
space. I have a Barrier Breaker
OpenWrt
with a 3.10.14
Linux
kernel. (There's an MTD
subsystem in use, so I have pseudo block devices for partitions on a NAND
flash (/dev/mtdblock1, ...12
).)
(I'm implementing some upgrading logic which requires keeping some state between reboots, to store this state, I use the file.)
To check a file existence I just try to open the file (without an O_CREAT
flag) and make a decision based on a result of opening. I use the next article about opening a file from within kernel: Read/write files within a Linux kernel module.
I'm able to check a file existence using this approach, but this file is placed not on a rootfs
partition, so I have to mount that partition before I can open the file on it.
I'm able to mount the partition, open file (to check it existence) and close it, if it was opened, but failed to un-mount it: I got an error -16
: EBUSY
which, as I guess, means that someone else keep using this block device/mount point. So a question who can keep a reference on it?
I think it's a bad idea, but just to test, I tried to un-mount forcibly with an MNT_FORCE
, but, as this article https://linux.die.net/man/2/umount states that this option only for NFS
fs, nothing changed.
Here's a code:
/* lool at https://stackoverflow.com/questions/1184274/read-write-files-within-a-linux-kernel-module */
static struct file *file_open( const char *path, int flags, int rights )
{
struct file *filp = NULL;
mm_segment_t oldfs;
int err = 0;
oldfs = get_fs();
set_fs( get_ds() );
filp = filp_open( path, flags, rights );
set_fs( oldfs );
if( IS_ERR( filp ) )
{
err = PTR_ERR( filp );
return NULL;
}
return filp;
}
bool need_to_switch_to_me_upgrade_mode( void )
{
struct file* me_upgrade_finished_file;
dev_t me_upgrade_dev;
char full_name[256] = { 0 };
bool result;
int err;
const char* me_upgrade_dir = "/me_upgrade";
const char* me_upgrade_dev_name = "/dev/me_upgrade";
const char* me_upgrade_finished_flag = "/etc/me_upgrade_finished";
// /dev/mtdblock6
const char* me_upgrade_finished_flag_partition = "/dev/mtdblock" str( RECOVERY_ROOTFS_DATA_MTD_PART_NUM );
err = sys_mkdir( (const char __user __force *) me_upgrade_dir, 0700 );
if( err < 0 )
panic( "fail to mkdir %s\n", me_upgrade_dir );
me_upgrade_dev = name_to_dev_t( me_upgrade_finished_flag_partition );
err = create_dev( me_upgrade_dev_name, me_upgrade_dev );
if( err < 0 )
panic( "fail to create_dev %s\n", me_upgrade_dev_name );
err = sys_mount( me_upgrade_dev_name, me_upgrade_dir, "jffs2", MS_SILENT, NULL );
if( err < 0 )
panic( "fail to mount %s on to %s, err: %d\n", me_upgrade_dev_name, me_upgrade_dir, err );
strlcat( full_name, me_upgrade_dir, sizeof( full_name ) );
strlcat( full_name, me_upgrade_finished_flag, sizeof( full_name ) );
me_upgrade_finished_file = file_open( full_name, O_RDONLY, 0 );
if( !me_upgrade_finished_file )
{
printk( "fail to open a %s file\n", full_name );
result = true;
}
else
{
printk( "success to open a file\n" );
result = false;
}
if( me_upgrade_finished_file )
{
err = filp_close( me_upgrade_finished_file, NULL );
printk( "filp_close returned: %d\n", err );
}
err = sys_umount( me_upgrade_dir, MNT_DETACH );
printk( "sys_umount returned: %d\n", err );
sys_unlink( me_upgrade_dev_name ); // destroy_dev( me_upgrade_dev_name );
sys_rmdir( me_upgrade_dir );
return result;
}
This code is called from a kernel_init_freeable
function (init/main.c
) after we have MTD
subsystem initialized (after do_basic_setup()
and before a rootfs
gets mounted).
So the questions are:
- who can keep using a block device/mount point after I closed a file?
- is any other ways to check if file exist from within kernel?
I have a second option, just to place my state in a partition without any fs, and check it by performing a raw access to the flash memory, but this approach will require significant changes to user code I have now, so I'm trying to avoid it...
P.S. I tried to change a call to file_open/filp_close
by sys_open/sys_close
(with the same arguments), but nothing changed...