I have a 3 dimensional numpy array
([[[0.30706802]],
[[0.19451728]],
[[0.19380492]],
[[0.23329106]],
[[0.23849282]],
[[0.27154338]],
[[0.2616704 ]], ... ])
with shape (844,1,1) resulting from RNN model.predict()
y_prob = loaded_model.predict(X)
, my problem is how to convert it to a pandas dataframe. I have used Keras
my objective is to have this:
0 0.30706802
7 0.19451728
21 0.19380492
35 0.23329106
42 ...
...
815 ...
822 ...
829 ...
836 ...
843 ...
Name: feature, Length: 78, dtype: float32