Given a list of tuples as following:
values = [
('a', 'b', 'c'),
('d', 'e'),
('f', 'g', 'h')
]
I'd like to calculate different combinations of those values, but not as a cartesian product, rather as a sum on some custom rules. To clarify, if we calculate the cartesian product between those tuples, we will get 3*2*3 = 18 different combinations. But my desire is to get something like this:
combinations = [
('a', 'd', 'f'),
('a', 'e', 'g'),
('a', 'e', 'h'),
('b', 'd', 'f'),
('b', 'e', 'g'),
('b', 'e', 'h'),
('c', 'd', 'f'),
('c', 'e', 'g'),
('c', 'e', 'h')
]
So the resulting list contains 9 different combinations instead of 18. Example with 4 tuples:
values = [
('a', 'b', 'c'),
('d', 'e'),
('f', 'g', 'h'),
('i', 'j', 'k', 'l')
]
The result would be
combinations = [
('a', 'd', 'f', 'i'),
('a', 'e', 'g', 'j'),
('a', 'e', 'h', 'k'),
('a', 'e', 'h', 'l'),
('b', 'd', 'f', 'i'),
('b', 'e', 'g', 'j'),
('b', 'e', 'h', 'k'),
('b', 'e', 'h', 'l'),
('c', 'd', 'f', 'i'),
('c', 'e', 'g', 'j'),
('c', 'e', 'h', 'k'),
('c', 'e', 'h', 'l'),
]
To Explain the logic for the outputs further:
In both inputs, the first tuple is behaving as it would in a cartesian product. However, all the other tuples except the first are being iterated (or zipped) together. Additionally, if one of the tuples being iterated together "runs out of values" so to speak, we use the last value in the tuple instead.
What would be the efficient way to achieve this?