I'm getting a list of all my training images from a path with this method:
def ReadImages(Path):
ImageList = list()
LabelList = list()
# Get all subdirectories
FolderList = os.listdir(Path)
# Loop over each directory
for File in FolderList:
if(os.path.isdir(Path + os.path.sep + File)):
for Image in os.listdir(Path + os.path.sep + File):
# Add the image path to the list
ImageList.append(Path + os.path.sep + File + os.path.sep + Image)
# Add a label for each image and remove the file extension
LabelList.append(File.split(".")[0])
else:
ImageList.append(Path + os.path.sep + File)
# Add a label for each image and remove the file extension
LabelList.append(File.split(".")[0])
return ImageList, LabelList
And now I want to call the keras method 'model.fit(data,labels,epochs, bs)' with that data
model = Sequential()
model.add(Dense(32, activation='tanh', input_dim=1))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
data, labels = ReadImages(TRAIN_DIR)
# Train the model, iterating on the data in batches of 32 samples
model.fit(np.array(data), np.array(labels), epochs=10, batch_size=32)
But it shows this error:
return array(a, dtype, copy=False, order=order)
ValueError: could not convert string to float: 'train_data/\\non_pdr\\im0008.ppm'
How do I convert my list of paths in a list to feed my train model data?
My files are like
(['train_data/non_pdr\im0001.ppm', 'train_data/non_pdr\im0002.ppm', 'train_data/non_pdr\im0003.ppm', 'train_data/non_pdr\im0004.ppm', 'train_data/non_pdr\im0005.ppm', 'train_data/non_pdr\im0006.ppm', 'train_data/non_pdr\im0007.ppm', 'train_data/non_pdr\im0008.ppm', 'train_data/non_pdr\im0009.ppm', 'train_data/non_pdr\im0010.ppm', 'train_data/non_pdr\im0011.ppm', 'train_data/non_pdr\im0012.ppm', 'train_data/non_pdr\im0013.ppm', 'train_data/non_pdr\im0014.ppm', 'train_data/non_pdr\im0015.ppm', 'train_data/non_pdr\im0016.ppm', 'train_data/non_pdr\im0017.ppm', 'train_data/non_pdr\im0018.ppm', 'train_data/non_pdr\im0019.ppm', 'train_data/non_pdr\im0020.ppm', 'train_data/non_pdr\im0021.ppm', 'train_data/non_pdr\im0022.ppm', ...