The answer is that your data is not as "tidy" as it could be.
This is what you have (with an added observation ID for clarity):
library(dplyr)
df <- data.frame(nominal_gdp = rnorm(4),
nominal_inv = rnorm(4),
nominal_gov = rnorm(4),
real_gdp = rnorm(4),
real_inv = rnorm(4),
real_gov = rnorm(4))
df <- df %>%
mutate(obs_id = 1:n()) %>%
select(obs_id, everything())
which gives:
obs_id nominal_gdp nominal_inv nominal_gov real_gdp real_inv real_gov
1 1 -0.9692060 -1.5223055 -0.26966202 0.49057546 2.3253066 0.8761837
2 2 1.2696927 1.2591910 0.04238958 -1.51398652 -0.7209661 0.3021453
3 3 0.8415725 -0.1728212 0.98846942 -0.58743294 -0.7256786 0.5649908
4 4 -0.8235101 1.0500614 -0.49308092 0.04820723 -2.0697008 1.2478635
Consider if you had instead, in df2
:
obs_id variable real nominal
1 1 gdp 0.49057546 -0.96920602
2 2 gdp -1.51398652 1.26969267
3 3 gdp -0.58743294 0.84157254
4 4 gdp 0.04820723 -0.82351006
5 1 inv 2.32530662 -1.52230550
6 2 inv -0.72096614 1.25919100
7 3 inv -0.72567857 -0.17282123
8 4 inv -2.06970078 1.05006136
9 1 gov 0.87618366 -0.26966202
10 2 gov 0.30214534 0.04238958
11 3 gov 0.56499079 0.98846942
12 4 gov 1.24786355 -0.49308092
Then what you want to do is trivial:
df2 %>% mutate(deflator = real / nominal)
obs_id variable real nominal deflator
1 1 gdp 0.49057546 -0.96920602 -0.50616221
2 2 gdp -1.51398652 1.26969267 -1.19240392
3 3 gdp -0.58743294 0.84157254 -0.69801819
4 4 gdp 0.04820723 -0.82351006 -0.05853872
5 1 inv 2.32530662 -1.52230550 -1.52749012
6 2 inv -0.72096614 1.25919100 -0.57256297
7 3 inv -0.72567857 -0.17282123 4.19901294
8 4 inv -2.06970078 1.05006136 -1.97102841
9 1 gov 0.87618366 -0.26966202 -3.24919196
10 2 gov 0.30214534 0.04238958 7.12782060
11 3 gov 0.56499079 0.98846942 0.57158146
12 4 gov 1.24786355 -0.49308092 -2.53074800
So the question becomes: how do we get to the nice dplyr-compatible data.frame.
You need to gather your data using tidyr::gather
. However, because you have 2 sets of variables to gather (the real and nominal values), it is not straightforward. I have done it in two steps, there may be a better way though.
real_vals <- df %>%
select(obs_id, starts_with("real")) %>%
# the line below is where the magic happens
tidyr::gather(variable, real, starts_with("real")) %>%
# extracting the variable name (by erasing up to the underscore)
mutate(variable = gsub(variable, pattern = ".*_", replacement = ""))
# Same thing for nominal values
nominal_vals <- df %>%
select(obs_id, starts_with("nominal")) %>%
tidyr::gather(variable, nominal, starts_with("nominal")) %>%
mutate(variable = gsub(variable, pattern = ".*_", replacement = ""))
# Merging them... Now we have something we can work with!
df2 <-
full_join(real_vals, nominal_vals, by = c("obs_id", "variable"))
Note the importance of the observation id when merging.