Assuming you want to do the serialization yourself and not use Google Protocol Buffers or some library to handle it for you, I'd suggest writing a pair of functions like this:
// Serializes (msg) into a flat array of bytes, and returns the number of bytes written
// Note that (outBuf) must be big enough to hold any Message you might have, or there will
// be a buffer overrun! Modifying this function to check for that problem and
// error out instead is left as an exercise for the reader.
int SerializeMessage(const struct Message & msg, char * outBuf)
{
char * outPtr = outBuf;
int32_t sendID = htonl(msg.id); // htonl will make sure it gets sent in big-endian form
memcpy(outPtr, &sendID, sizeof(sendID));
outPtr += sizeof(sendID);
int32_t sendLen = htonl(msg.message_length);
memcpy(outPtr, &sendLen, sizeof(sendLen));
outPtr += sizeof(sendLen);
memcpy(outPtr, msg.message_str, msg.message_length); // I'm assuming message_length=strlen(message_str)+1 here
outPtr += msg.message_length;
return (outPtr-outBuf);
}
// Deserializes a flat array of bytes back into a Message object. Returns 0 on success, or -1 on failure.
int DeserializeMessage(const char * inBuf, int numBytes, struct Message & msg)
{
const char * inPtr = inBuf;
if (numBytes < sizeof(int32_t)) return -1; // buffer was too short!
int32_t recvID = ntohl(*((int32_t *)inPtr));
inPtr += sizeof(int32_t);
numBytes -= sizeof(int32_t);
msg.id = recvID;
if (numBytes < sizeof(int32_t)) return -1; // buffer was too short!
int32_t recvLen = ntohl(*((int32_t *)inPtr));
inPtr += sizeof(int32_t);
numBytes -= sizeof(int32_t);
msg.message_length = recvLen; if (msg.message_length > 1024) return -1; /* Sanity check, just in case something got munged we don't want to allocate a giant array */
msg.message_str = new char[msg.message_length];
memcpy(msg.message_str, inPtr, numBytes);
return 0;
}
With these functions, you are now able to convert a Message into a simple char-array and back at will. So now all you have to do is send the char-array over the TCP connection, receive it at the far end, and then Deserialize the array back into a Message struct there.
One wrinkle with this is that your char arrays will be variable-length (due to the presence of a string which can be different lengths), so your receiver will need some easy way to know how many bytes to receive before calling DeserializeMessage() on the array.
An easy way to handle that is to always send a 4-byte integer first, before sending the char-array. The 4-byte integer should always be the size of the upcoming array, in bytes. (Be sure to convert the integer to big-endian first, via htonl(), before sending it, and convert it back to native-endian on the receiver via htonl() before using it).