I have train & test image data for which Shapes are given below.
X_test.shape , y_test.shape , X_train.shape , y_train.shape
((277, 128, 128, 3), (277, 1), (1157, 128, 128, 3), (1157, 1))
I am training a model
def baseline_model():
filters = 100
model = Sequential()
model.add(Conv2D(filters, (3, 3), input_shape=(128, 128, 3), padding='same', activation='relu'))
#model.add(Dropout(0.2))
model.add(BatchNormalization())
model.add(Conv2D(filters, (3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Flatten())
model.add(Conv2D(filters, (3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(filters, (3, 3), activation='relu', padding='same'))
model.add(Activation('linear'))
model.add(BatchNormalization())
model.add(Dense(512, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# Compile model
lrate = 0.01
epochs = 10
decay = lrate/epochs
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)
model.compile(loss='sparse_categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
print(model.summary())
return model
But I am getting an error Given below
Error when checking target: expected dense_35 to have 4 dimensions, but got array with shape (1157, 1)
Please tell me what mistake I am making and how to fix this. I have attached snapshot of model summary