I have very big df:
df.shape()
= (106, 3364)
I want to calculate so called frechet distance by using this Frechet Distance between 2 curves. And it works good. Example:
x = df['1']
x1 = df['1.1']
p = np.array([x, x1])
y = df['2']
y1 = df['2.1']
q = np.array([y, y1])
P_final = list(zip(p[0], p[1]))
Q_final = list(zip(q[0], q[1]))
from frechetdist import frdist
frdist(P_final,Q_final)
But I can not do row by row like:
`1 and 1.1` to `1 and 1.1` which is equal to 0
`1 and 1.1` to `2 and 2.1` which is equal to some number
...
`1 and 1.1` to `1682 and 1682.1` which is equal to some number
I want to create something (first idea is for loop, but maybe you have better solution) to calculate this frdist(P_final,Q_final) between:
- first rows to all rows (including itself)
- second row to all rows (including itself)
Finally, I supposed to get a matrix size (106,106)
with 0
on diagonal (because distance between itself is 0
)
matrix =
0 1 2 3 4 5 ... 105
0 0
1 0
2 0
3 0
4 0
5 0
... 0
105 0
Not including my trial code because it is confusing everyone!
EDITED: Sample data:
1 1.1 2 2.1 3 3.1 4 4.1 5 5.1
0 43.1024 6.7498 45.1027 5.7500 45.1072 3.7568 45.1076 8.7563 42.1076 8.7563
1 46.0595 1.6829 45.0595 9.6829 45.0564 4.6820 45.0533 8.6796 42.0501 3.6775
2 25.0695 5.5454 44.9727 8.6660 41.9726 2.6666 84.9566 3.8484 44.9566 1.8484
3 35.0281 7.7525 45.0322 3.7465 14.0369 3.7463 62.0386 7.7549 65.0422 7.7599
4 35.0292 7.5616 45.0292 4.5616 23.0292 3.5616 45.0292 7.5616 25.0293 7.5613