I want to calculate the mean of the absolute value of all numerical columns for the example dataset DT
:
library(data.table)
set.seed(1)
DT <- data.table(panelID = sample(50,50), # Creates a panel ID
Country = c(rep("Albania",30),rep("Belarus",50), rep("Chilipepper",20)),
some_NA = sample(0:5, 6),
some_NA_factor = sample(0:5, 6),
Group = c(rep(1,20),rep(2,20),rep(3,20),rep(4,20),rep(5,20)),
Time = rep(seq(as.Date("2010-01-03"), length=20, by="1 month") - 1,5),
norm = round(runif(100)/10,2),
Income = round(rnorm(10,-5,5),2),
Happiness = sample(10,10),
Sex = round(rnorm(10,0.75,0.3),2),
Age = sample(100,100),
Educ = round(rnorm(10,0.75,0.3),2))
DT [, uniqueID := .I] # Creates a unique ID
DT[DT == 0] <- NA # https://stackoverflow.com/questions/11036989/replace-all-0-values-to-na
DT$some_NA_factor <- factor(DT$some_NA_factor)
I tried to calculate the means and the absolute means as follows:
mean_of_differences <- DT[,lapply(Filter(is.numeric,.SD),mean, na.rm=TRUE)]
mean_of_differences <- as.data.frame(t(mean_of_differences))
mean_of_differences <- round(mean_of_differences, digits=2)
mean_of_absolute_diff <- DT[,lapply(Filter(is.numeric,.SD),function(x) mean(abs(x),na.rm=TRUE))]
mean_of_absolute_diff <- as.data.frame(t(mean_of_absolute_diff))
mean_of_absolute_diff <- round(mean_of_differences, digits=2)
The mean of Income for the absolute differences is however negative (as it is for the normal mean), which obviously is not possible. If I look at my code I don't understand what I am doing wrong. What am I overlooking?