I am trying to fit a double-exponential (i.e. mixture of two exponential or bi-exp) data using MLE. Though there is no direct example of such a problem, yet I found some hint of using MLE for linear (Maximum Likelihood Estimate pseudocode), sigmoidal (https://stats.stackexchange.com/questions/66199/maximum-likelihood-curve-model-fitting-in-python) and normal (Scipy MLE fit of a normal distribution) distribution fitting. Using these examples I have tested the following code:
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
import scipy.stats as stats
size = 300
def simu_dt():
## simulate Exp2 data
np.random.seed(0)
## generate random values between 0 to 1
x = np.random.rand(size)
data = []
for n in x:
if n < 0.6:
# generating 1st exp data
data.append(np.random.exponential(scale=20)) # t1
else:
# generating 2nd exp data
data.append(np.random.exponential(scale=500)) # t2
return np.array(data)
ydata2 = simu_dt() # call to generate simulated data
## trimming the data at the beginning and the end a bit
ydata2 = ydata2[np.where(2 < ydata2)]
ydata2 = ydata2[np.where(ydata2 < 3000)]
## creating the normalized log binned histogram data
bins = 10 ** np.linspace(np.log10(np.min(ydata2)), np.log10(np.max(ydata2)), 10)
counts, bin_edges = np.histogram(ydata2, bins=bins)
bin_centres = (bin_edges[:-1] + bin_edges[1:]) / 2
bin_width = (bin_edges[1:] - bin_edges[:-1])
counts = counts / bin_width / np.sum(counts)
## generating arbitrary x value
x1 = np.linspace(bin_centres.min(), bin_centres.max(), len(ydata2))
def MLE(params):
""" find the max likelihood """
a1, k1, k2, sd = params
yPred = (1-a1)*k1*np.exp(-k1*x1) + a1*k2*np.exp(-k2*x1)
negLL = -np.sum(stats.norm.pdf(ydata2, loc=yPred, scale=sd))
return negLL
guess = np.array([0.4, 1/30, 1/320, 0.2])
bnds = ((0, 0.9), (1/200, 1/2), (1/1000, 1/100), (0, 1))
## best function used for global fitting
results = optimize.minimize(MLE, guess, method='SLSQP', bounds=bnds)
print(results)
A1, K1, K2, _ = results.x
y_fitted = (1-A1)*K1*np.exp(-K1*x1) + A1*K2*np.exp(-K2*x1)
## plot actual data
plt.plot(bin_centres, counts, 'ko', label=" actual data")
plt.xlabel("Dwell Times (s)")
plt.ylabel("Probability")
## plot fitted data on original data
plt.plot(x1, y_fitted, c='r', linestyle='dashed', label="fit")
plt.legend()
plt.xscale('log')
plt.yscale('log')
plt.show()
The fit summary shows:
Out:
fun: -1.7494005752178573e-16
jac: array([-3.24161825e-18, 0.00000000e+00, 4.07105635e-16, -6.38053319e-14])
message: 'Optimization terminated successfully.'
nfev: 6
nit: 1
njev: 1
status: 0
success: True
x: array([0.4 , 0.03333333, 0.003125 , 0.2 ])
This is the plot showing the fit. Though the fit seems working the result returns the guesses I have provided! Also, if I change the guesses the fit is also changing, meaning it probably not converging at all. I am not sure what wrong I am doing. Just to say I am not an expert in Python and math as well. So, any help is highly appreciated. Thanks in Advance.