I am trying to detect outlier images. But I'm getting bizarre results from the model.
I've read in the images with cv2, flattened them into 1d-arrays, and turned them into a pandas dataframe and then fed that into the SVM.
import numpy as np
import cv2
import glob
import pandas as pd
import sys, os
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn import *
import seaborn as sns`
load the labels and files
labels_wt = np.loadtxt("labels_wt.txt", delimiter="\t", dtype="str")
files_wt = np.loadtxt("files_wt.txt", delimiter="\t", dtype="str")`
load and flatten the images
wt_images_tmp = [cv2.imread(file) for file in files_wt]
wt_images = [image.flatten() for image in wt_images_tmp]
tmp3 = np.array(wt_images)
mutant_images_tmp = [cv2.imread(file) for file in files_mut]
mutant_images = [image.flatten() for image in mutant_images_tmp]
tmp4 = np.array(mutant_images)
X = pd.DataFrame(tmp3) #load the wild-type images
y = pd.Series(labels_wt)
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, random_state=42)
X_outliers = pd.DataFrame(tmp4)
clf = svm.OneClassSVM(nu=0.15, kernel="rbf", gamma=0.0001)
clf.fit(X_train)
Then I evaluate the results according to the sklearn tutorial on oneclass SVM.
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size
print(n_error_train / len(y_pred_train))
print(float(n_error_test) / float(len(y_pred_test)))
print(n_error_outliers / len(y_pred_outliers))`
my error rates on the training set have been variable (10-30%), but on the test set, they have never gone below 100%. Am I doing this wrong?