It is not easy to tell from your question what you're specifically trying to do. Your data has no column headings, we do not know the data types, you did not include the error message, and you contradicted yourself between your original question and your comment (Is the first column the time stamp? Or is the second column the time stamp?
I'm trying to understand. Are you trying to:
- Split your original
data.frame
in to multiple data.frame
's?
- View a specific sub-set of your data? Effectively, you want to
filter
your data?
- Group your
data.frame
in to specific increments of a set time-interval to then aggregate the results?
Assuming that you have named the variables on your dataframe as time
and value
, I've addressed these three examples below.
#Set Data
num <- 100
set.seed(4444)
tempdf <- data.frame(time = sample(seq(0.000180,0.000500,0.000005),num,TRUE),
value = sample(1:100,num,TRUE))
#Example 1: Split your data in to multiple dataframes (using base functions)
temp1 <- tempdf[ tempdf$time>0.0003 , ]
temp2 <- tempdf[ tempdf$time>0.0003 & tempdf$time<0.0004 , ]
#Example 2: Filter your data (using dplyr::filter() function)
dplyr::filter(tempdf, time>0.0003 & time<0.0004)
#Example 3: Chain the funcions together using dplyr to group and summarise your data
library(dplyr)
tempdf %>%
mutate(group = floor(time*10000)/10000) %>%
group_by(group) %>%
summarise(avg = mean(value),
num = n())
I hope that helps?