0

I'm making goal-keeper bot in haxball game. It worked well when i trained less but i worked worse when i trained more.

Last reinforcement state: 5160 episode - 4171281 steps - 0.05 epsilon:

Last fit result= acc: 0.9905, loss: 293408940460887.5000

(previous fit result like: acc: 0.7, loss: 0.012)

Last game result image: https://i.ibb.co/NmLL5b7/hax2.gif

This Keras model:

        NBACTIONS = 3
        WINDOW_WIDTH = 630
        WINDOW_HEIGHT = 400
        IMGHEIGHT = int(WINDOW_HEIGHT/5)
        IMGWIDTH = int(WINDOW_WIDTH/5)
        IMGHISTORY = 4

        model = Sequential()   
        model.add(Conv2D(32, kernel_size=4, strides = (2,2), input_shape = (DCQL_Global.IMGHEIGHT,DCQL_Global.IMGWIDTH,DCQL_Global.IMGHISTORY),padding = "same"))
        model.add(Activation("relu"))
        model.add(MaxPool2D(pool_size=(2, 2)))
        model.add(Conv2D(64,kernel_size=4,strides=(2,2),padding="same"))
        model.add(Activation("relu"))
        model.add(MaxPool2D(pool_size=(2, 2)))
        model.add(BatchNormalization())
        model.add(Conv2D(64,kernel_size=3,strides=(1,1),padding="same"))
        model.add(Activation("relu"))
        model.add(MaxPool2D(pool_size=(2, 2)))
        model.add(Flatten())
        model.add(Dense(512))
        model.add(Activation("relu"))
        model.add(Dense(units= DCQL_Global.NBACTIONS, activation="linear"))
        model.compile(loss = "mse", optimizer=Adam(lr=0.0001), metrics=['accuracy'])

Reward rules= goal: -1, save(not missing goal): +1, after kicking the ball if gk follow the ball correctly +0.01 else gk follow the ball incorrectly -0.01 reward.

I'm preprocessing the image like the following link:

https://i.ibb.co/yPdrJKJ/hax.gif

Preprocessing code:

def ProcessGameImage(I):    
    GreyImage = skimage.color.rgb2gray(I)   
    CroppedImage = GreyImage     
    ReducedImage = skimage.transform.resize(CroppedImage,(DCQL_Global.IMGHEIGHT,DCQL_Global.IMGWIDTH))  
    ReducedImage = skimage.exposure.rescale_intensity(ReducedImage, out_range = (0,255))     
    ReducedImage = ReducedImage / 255.0

    return ReducedImage.astype(np.float)

What's my fault?

  • Not sure about the RL specificities here, but [accuracy is meaningless in regression settings (i.e with MSE loss)](https://stackoverflow.com/questions/48775305/what-function-defines-accuracy-in-keras-when-the-loss-is-mean-squared-error-mse/48788577#48788577) – desertnaut Sep 05 '19 at 16:54
  • 1
    Thanks for comment @desertnaut – SolutionLover Sep 05 '19 at 17:32

0 Answers0