[[https://github.com/Shristigithub/Population/blob/master/population.csv]]1 [https://i.stack.imgur.com/Bf64A.png]2
Please help me to get one country name and all the years columns separately.
i want output to look something like this
[[https://github.com/Shristigithub/Population/blob/master/population.csv]]1 [https://i.stack.imgur.com/Bf64A.png]2
Please help me to get one country name and all the years columns separately.
i want output to look something like this
Is this what you want:
import pandas as pd
df = pd.DataFrame({
'id':['a','a','b','c','c'],
'words':['asd','rtr','s','rrtttt','dsfd']})
print(df)
zet = df.groupby('id')['words'].apply(','.join)
print(zet)
Output:
id words
0 a asd
1 a rtr
2 b s
3 c rrtttt
4 c dsfd
id
a asd,rtr
b s
c rrtttt,dsfd
Name: words, dtype: object
In your case maybe something like this:
sorted_output = df.groupby('coutry_name')['years'].apply(','.join)
Try the below code, hope this will help.
Consider your data frame to be like this.
df = pd.DataFrame({'Date': [1,2,34,6,7,8,9],'values':[123,3454,6734,123,45,234,123]})
So df will be like:
Date values
0 1 123
1 2 3454
2 34 6734
3 6 123
4 7 45
5 8 234
6 9 123
Now first take transpose and then set column value, as shown below:
df = df.transpose()
df.columns= df.iloc[0]
df
Ouput will be:
Date 1 2 34 6 7 8 9 <--- These are now columns headers
Date 1 2 34 6 7 8 9
values 123 3454 6734 123 45 234 123