I am working on a cost minimizing function to help with allocation/weights in a portfolio of stocks. I have the following code for the "Objective Function". This works when I tried it with 15 variables(stocks). However, when I tried it with 55 stocks it failed.
I have tried it with a smaller sample of stocks(15) and it works fine. The num_assets variable below is the number of stocks in the portfolio.
def get_metrics(weights):
weights = np.array(weights)
returnsR = np.dot(returns_annualR, weights )
volatilityR = np.sqrt(np.dot(weights.T, np.dot(cov_matrixR, weights)))
sharpeR = returnsR / volatilityR
drawdownR = np.multiply(weights, dailyDD).sum(axis=1, skipna =
True).min()
drawdownR = f(drawdownR)
calmarR = returnsR / drawdownR
results = (sharpeR * 0.3) + (calmarR * 0.7)
return np.array([returnsR, volatilityR, sharpeR, drawdownR, calmarR,
results])
def objective(weights):
# the number 5 is the index from the get_metrics array
return get_metrics(weights)[5] * -1
def check_sum(weights):
#return 0 if sum of the weights is 1
return np.sum(weights)-1
bound = (0.0,1.0)
bnds = tuple(bound for x in range (num_assets))
bx = list(bnds)
""" Custom step-function """
class RandomDisplacementBounds(object):
"""random displacement with bounds: see: https://stackoverflow.com/a/21967888/2320035
Modified! (dropped acceptance-rejection sampling for a more specialized approach)
"""
def __init__(self, xmin, xmax, stepsize=0.5):
self.xmin = xmin
self.xmax = xmax
self.stepsize = stepsize
def __call__(self, x):
"""take a random step but ensure the new position is within the bounds """
min_step = np.maximum(self.xmin - x, -self.stepsize)
max_step = np.minimum(self.xmax - x, self.stepsize)
random_step = np.random.uniform(low=min_step, high=max_step, size=x.shape)
xnew = x + random_step
return xnew
bounded_step = RandomDisplacementBounds(np.array([b[0] for b in bx]), np.array([b[1] for b in bx]))
minimizer_kwargs = {"method":"L-BFGS-B", "bounds": bnds}
globmin = sco.basinhopping(objective,
x0=num_assets*[1./num_assets],
minimizer_kwargs=minimizer_kwargs,
take_step=bounded_step,
disp=True)
The output should be an array of numbers that add up to 1 or 100%. However, this is not happening.