I am using spark version 2.3 and working on some poc wherein, I have to load some bunch of csv files to spark dataframe.
Considering below csv as a sample which I need to parse and load it into dataframe. The given csv has multiple bad records which needs to be identified.
id,name,age,loaded_date,sex
1,ABC,32,2019-09-11,M
2,,33,2019-09-11,M
3,XYZ,35,2019-08-11,M
4,PQR,32,2019-30-10,M #invalid date
5,EFG,32, #missing other column details
6,DEF,32,2019/09/11,M #invalid date format
7,XYZ,32,2017-01-01,9 #last column has to be character only
8,KLM,XX,2017-01-01,F
9,ABC,3.2,2019-10-10,M #decimal value for integer data type
10,ABC,32,2019-02-29,M #invalid date
It would have been an easy task, if I have to parse it using python or pandas functions.
This's how I defined schema for this.
from pyspark.sql.types import*
schema = StructType([
StructField("id", IntegerType(), True),
StructField("name", StringType(), True),
StructField("age", IntegerType(), True),
StructField("loaded_date", DateType(), True),
StructField("sex", StringType(), True),
StructField("corrupt_record",StringType(), True)])
df=spark.read.format("com.databricks.spark.csv") \
.option("header", "true") \
.option("dateFormat", "yyyy-MM-dd") \
.option("nanValue","0") \
.option("nullValue"," ") \
.option("treatEmptyValuesAsNulls","false") \
.option("columnNameOfCorruptRecord", "corrupt_record") \
.schema(schema).load(file)
>>> df.show(truncate=False)
+----+----+----+-----------+----+----------------------+
|id |name|age |loaded_date|sex |corrupt_record |
+----+----+----+-----------+----+----------------------+
|1 |ABC |32 |2019-09-11 |M |null |
|2 |null|33 |2019-09-11 |M |null |
|3 |XYZ |35 |2019-08-11 |M |null |
|4 |PQR |32 |2021-06-10 |M |null |
|5 |EFG |32 |null |null|5,EFG,32, |
|null|null|null|null |null|6,DEF,32,2019/09/11,M |
|7 |XYZ |32 |2017-01-01 |9 |null |
|null|null|null|null |null|8,KLM,XX,2017-01-01,F |
|null|null|null|null |null|9,ABC,3.2,2019-10-10,M|
|10 |ABC |32 |2019-03-01 |M |null |
+----+----+----+-----------+----+----------------------+
Above code has parsed many records as expected but has failed to check on invalid dates. see record '4'
& '10'
. It has converted to some junk dates.
I can load dates as string type and create some udf or use cast to parse it correctly and to see whether a date entered is valid or not. Is there any way to check invalid date in first place without using a custom udf or later in the code.
Also, I was looking a some way to handle record '7'
which is having a numeric value for last column.