I am working on a regression problem, namely the Boston House prediction problem hosted on Kaggle. I am currently using Random Forest Classifier to reduce the dimensions of my dataset. But right now, I'm getting the following error:
Traceback (most recent call last):
File "C:/Users/security/Downloads/AP/Boston-Kaggle/Model.py", line 96, in <module>
print("The selected values from the test set are: " + test[selected])
File "C:\Users\security\AppData\Roaming\Python\Python37\site-packages\pandas\core\frame.py", line 2918, in __getitem__
return self._getitem_bool_array(key)
File "C:\Users\security\AppData\Roaming\Python\Python37\site-packages\pandas\core\frame.py", line 2963, in _getitem_bool_array
(len(key), len(self.index)))
ValueError: Item wrong length 303 instead of 1459.
I don't understand why its deliberately asking for 1459 units. This is the chunk of code where the error is coming from:
test = pd.read_csv("https://raw.githubusercontent.com/oo92/Boston-Kaggle/master/test.csv")
# ... a lot of code in between
sel = SelectFromModel(RandomForestClassifier(n_estimators = 100), threshold = '0.5*mean')
sel.fit(x_train, y_train)
selected = sel.get_support()
print("The selected values from the test set are: " + test[selected])
Update
test.head():
Id MSSubClass MSZoning ... YrSold SaleType SaleCondition
0 1461 20 RH ... 2010 WD Normal
1 1462 20 RL ... 2010 WD Normal
2 1463 60 RL ... 2010 WD Normal
3 1464 60 RL ... 2010 WD Normal
4 1465 120 RL ... 2010 WD Normal
[5 rows x 80 columns]
print(selected):
[ True True True True True True True True True True True True
True True True True True True True True True True False True
True True True True True True True True True False True True
True False True False True True False False False False True True
True False True False True False True False False True True True
False True True True False False False False False False True True
True True False False True True False True True True True False
True True True False True False True True True False False False
False False False False False False False False False False False True
False False False True True False True False False True False True
False True False True False False False False False False False False
False False False False False False False True False True True False
False True True False False False False False False True True False
True False True False False True True False False True True True
False False False True True False False True False True True True
True False False False True False True True False True True False
True False True True True True False True True True True True
True False False False False True True True False False False False
False False False True False True False True False False True False
False True False True False True True False False False False False
False True False False True False True True False True False True
False True False True True True False False False False False True
False False False False False True False True False True False False
False False True True True False True False False True False True
True False False False False False True False True True False False
False True True]