Problem 2 of project Euler asks (emphasis mine)
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
Doing
for (int i = 1; i <= 4000000; i++)
{
currentTerm = fibonacci(i);
// ...
}
You are trying to calculate up to the 4,000,000th Fibonacci number, which is a very big beast, while you should stop around the 33th instead.
The other answers already pointed out the inefficiency of the recursive approach, but let me add some numbers to the discussion, using this slightly modified version of your program
#include <iostream>
#include <iomanip>
int k = 0;
// From https://oeis.org/A000045 The fibonacci numbers are defined by the
// recurrence relation F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
// In the project Euler question the sequence starts with 1, 2, 3, 5, ...
// So in the following I'll consider F(1) = 1 and F(2) = 2 as The OP does.
long long fibonacci(long long i)
{
++k;
if (i > 2)
return fibonacci(i - 1) + fibonacci(i - 2);
else
return i;
}
int main()
{
using std::cout;
using std::setw;
const long limit = 4'000'000;
long sum = 0;
cout << " i F(i) sum calls\n"
"-----------------------------------\n";
for (int i = 1; ; ++i)
{
long long F_i = fibonacci(i);
if ( F_i > limit ) // <-- corrected end condition
break;
if (F_i % 2 == 0)
{
sum += F_i;
cout << setw(3) << i << setw(10) << F_i
<< setw(10) << sum << setw(11) << k << '\n';
}
}
cout << "\nThe sum of all even Fibonacci numbers less then "
<< limit << " is " << sum << '\n';
return 0;
}
Once executed (live here), you can notice that the recursive function has been called more than 10,000,000 times, to calculate up to the 33th Fibonacci number.
That's simply not the right way. Memoization could help, here there's a quick benchmark comparing the recursive functions with a toy implementation of the memoization technique, which is represented by the histogram that you can't see. Because it's 300,000 times shorter than the others.
Still, that's not the "correct" or "natural" way to deal with this problem. As noted in the other answers you could simply calculate each number in sequence, given the previous ones. Enthus3d also noted the pattern in the sequence: odd, odd, even, odd, odd, even, ...
We can go even further and directly calculate only the even terms:
#include <iostream>
int main()
{
const long limit = 4'000'000;
// In the linked question the sequence starts as 1, 2, 3, 5, 8, ...
long long F_0 = 2, F_3 = 8, sum = F_0 + F_3;
for (;;)
{
// F(n+2) = F(n+1) + F(n)
// F(n+3) = F(n+2) + F(n+1) = F(n+1) + F(n) + F(n+1) = 2F(n+1) + F(n)
// F(n+6) = F(n+5) + F(n+4) = F(n+4) + F(n+3) + F(n+3) + F(n+2)
// = 2F(n+3) + F(n+4) + F(n+2) = 3F(n+3) + 2F(n+2)
// = 3F(n+3) + 2F(n+1) + 2F(n) = 3F(n+3) + F(n+3) - F(n) + 2F(n)
long long F_6 = 4 * F_3 + F_0;
if ( F_6 > limit )
break;
sum += F_6;
F_0 = F_3;
F_3 = F_6;
}
std::cout << sum << '\n'; // --> 4613732
return 0;
}
Live here.