I'm trying to build an AIC table for my candidate set of models in R, which were run using mlogit
. I've used glm
and glmer
in the past, and have always used the package AICcmodavg
and aictab
to extract values and create a model selection table. This package doesn't seem to work for mlogit
, so I'm wondering if there are any other ways of creating an AIC table in R besides manual calculation using the log-likelihood value?
Example of mlogit model output:
Call:
mlogit(formula = Case ~ Dist_boulder + Mesohabitat + Depth +
Size + Size^2 | -1, data = reach.dc, method = "nr")
Frequencies of alternatives:
0 1 2 3
1 0 0 0
nr method
5 iterations, 0h:0m:0s
g'(-H)^-1g = 1.19E-05
successive function values within tolerance limits
Coefficients :
Estimate Std. Error z-value Pr(>|z|)
Dist_boulder -0.052165 0.162047 -0.3219 0.74752
Mesohabitatriffle -1.400752 0.612329 -2.2876 0.02216 *
Mesohabitatrun 0.302697 0.420181 0.7204 0.47128
Depth 0.137524 0.162521 0.8462 0.39745
Size 0.336949 0.145036 2.3232 0.02017 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Log-Likelihood: -86.627
example of models run (from my candidate set of 14)
predation.reach<-mlogit(Case ~ Dist_boulder + Mesohabitat + Depth + Size + Size^2 | -1, data=reach.dc)
velocity.reach<-mlogit(Case ~ Mid_vel | -1, data=reach.dc)
spaces.reach<-mlogit(Case~ Embedded + Class | -1, data=reach.dc)
substrate.reach<-mlogit(Case ~ Class | -1, data=reach.dc)
defining candidate set list
cand.set.reach<-list(predation.reach, velocity.reach, spaces.reach, substrate.reach)