Has someone an idea how to solve the following problem?
Take the numbers 1,...,100000 and permute them in some way. At first you can make a swap of two numbers. Then you have to compute how many rounds it would take to collect numbers in ascending order. You have to collect numbers by every round by going left to right. In how many ways you can swap two numbers at the beginning to collect numbers in ascending order with minimum number of rounds?
For example, if numbers are from one to five and those at the beginning in order 3, 1, 5, 4, 2, then you can collect them in three rounds: On first round you collect 1, 2, on the second round 3, 4 and finally 5. But you can do one swap in three different ways to collect numbers in two rounds, namely
3, 4, 5, 1, 2
3, 1, 4, 5, 2
3, 1, 2, 4, 5
Five number sequence can be solved easily by brute force and I found an algorithm to collect 1000 numbers, but 100000 numbers needs maybe some kind of trick to compute fast how a specific swap at the beginning affects how many rounds it takes to collect numbers.
Another example:
Take 10 numbers in order [6, 1, 4, 10, 7, 2, 3, 9, 5, 8]. You can swap 4 and 9 to collect numbers in three rounds. But my code returns that there are 3 ways to make a swap. Where is my mistake?
from bisect import bisect_left, bisect_right
from functools import cmp_to_key
def longest_subsequence(seq, mode='strictly', order='increasing',
key=None, index=False):
bisect = bisect_left if mode.startswith('strict') else bisect_right
# compute keys for comparison just once
rank = seq if key is None else map(key, seq)
if order == 'decreasing':
rank = map(cmp_to_key(lambda x,y: 1 if x<y else 0 if x==y else -1), rank)
rank = list(rank)
if not rank: return []
lastoflength = [0] # end position of subsequence with given length
predecessor = [None] # penultimate element of l.i.s. ending at given position
for i in range(1, len(seq)):
# seq[i] can extend a subsequence that ends with a lesser (or equal) element
j = bisect([rank[k] for k in lastoflength], rank[i])
# update existing subsequence of length j or extend the longest
try: lastoflength[j] = i
except: lastoflength.append(i)
# remember element before seq[i] in the subsequence
predecessor.append(lastoflength[j-1] if j > 0 else None)
# trace indices [p^n(i), ..., p(p(i)), p(i), i], where n=len(lastoflength)-1
def trace(i):
if i is not None:
yield from trace(predecessor[i])
yield i
indices = trace(lastoflength[-1])
return list(indices) if index else [seq[i] for i in indices]
def computerounds(lines):
roundnumber = 1
for i in range(len(lines)-1):
if lines[i] > lines[i + 1]:
roundnumber += 1
return roundnumber
if __name__ == '__main__':
lines = [[3,1,5,4,2],[6, 1, 4, 10, 7, 2, 3, 9, 5, 8]]
case = 1
ways_to_change = len(longest_subsequence(lines[case], mode='strictly', order='decreasing',
key=None, index=False))
print(len(lines[case]), computerounds(lines[case]), ways_to_change)
# Should return 10 3 1
Effort 1:
I guess the hardest part is to find a permutation that guarantees you collect the numbers with minimum number of moves. I also heard that Dilworth's theorem tells me that the minimal decomposition into ascending subsequences is equal to the size of the maximal descending subsequence. https://artofproblemsolving.com/community/c163h1906044_an_algorithm_to_collect_numbers_in_ascending_order
Effort 2:
I tried to run the code by jferard and solve the problem for the case junar9.in
found in https://www.ohjelmointiputka.net/tiedostot/junar.zip
. The file contains fir the number of numbers in the first line and then the rest of the lines gives the numbers as in original order. It looks it takes too much memory. The output was in Linux Mint:
(base) jaakko@jaakko-Aspire-E1-572:~/.config/spyder-py3$ python3 temp.py
Killed
Here is the code from temp.py
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import os.path
import requests
import zipfile
import warnings
def invert(L):
M = [None] + [0 for _ in range(len(L))]
for i, k in enumerate(L):
M[k] = i
return M
def perform_data(read_data):
s = ""
for i in range(len(read_data)):
if read_data[i].isnumeric():
s += read_data[i]
else:
s += " "
s = s[:-1]
s = s.split(" ")
tmp = []
for i in range(1, len(s)):
if s[i] != '':
tmp.append(int(s[i]))
return tmp
def download_zipfile(url):
if not os.path.isfile('/tmp/junar.zip'):
with open('/tmp/junar.zip', 'wb') as out:
out.write(requests.get(url).content)
def read_zipfile_item(filename):
with zipfile.ZipFile('/tmp/junar.zip') as zip_file:
with zip_file.open(filename) as f:
return f.read().decode('utf8')
def generate_original_rounds(A):
B =[0]*(len(A)-1)
print(A)
roundno = 1
for i in range(1,len(A)):
if A.index(i) < A.index(i+1):
B[i-1] = roundno
else:
roundno += 1
B[i-1] = roundno
print(roundno)
return B
def classify_moves(L):
M = invert(L)
N = len(L)
good_moves, bad_moves = [None], [None]
for k in range(1, N+1):
good_move, bad_move = find_moves(k, L, M, N)
good_moves.append(good_move)
bad_moves.append(bad_move)
return good_moves, bad_moves
def find_moves(k, L, M, N):
def in_range(a, b):
return set(L[j] for j in range(a, b))
good_move = set()
bad_move = set()
if k == 1:
if M[k+1] < M[k]:
good_move |= in_range(0, M[k+1]+1)
else: # M[k] < M[k+1]
bad_move |= in_range(M[k+1], N)
elif k == N:
if M[k] < M[k-1]:
good_move |= in_range(M[k-1], N)
else: # M[k-1] < M[k]
bad_move |= in_range(0, M[k-1]+1)
elif M[k-1] < M[k+1]:
if M[k] < M[k-1]:
good_move |= in_range(M[k-1], M[k+1])
elif M[k+1] < M[k]:
good_move |= in_range(M[k-1]+1, M[k+1]+1)
if M[k-1] < M[k]:
bad_move |= in_range(0, M[k-1]+1)
if M[k] < M[k+1]:
bad_move |= in_range(M[k+1], N)
else: # M[k+1] < M[k-1]
if M[k+1] < M[k] < M[k-1]:
good_move |= in_range(0, M[k+1]+1) | in_range(M[k-1], N)
elif M[k] < M[k+1]:
bad_move |= in_range(M[k+1], M[k-1])
else: # M[k-1] < M[k]:
bad_move |= in_range(M[k+1]+1, M[k-1]+1)
return good_move, bad_move
def collate_moves_aux(L):
good_moves, bad_moves = classify_moves(L)
N = len(L)
swaps_by_removed = {}
for i in range(1, N+1):
for j in range(i+1, N+1):
removed = 0
if j in good_moves[i]:
if i in good_moves[j]:
removed = 2
elif i not in bad_moves[j]:
removed = 1
elif j not in bad_moves[i] and i in good_moves[j]:
removed = 1
if abs(i-j) <= 1: # don't count twice
removed -= 1
if removed > 0:
swaps_by_removed.setdefault(removed, []).append((i,j))
return swaps_by_removed
def collate_moves(L):
swaps_by_removed = collate_moves_aux(L)
if __name__ == '__main__':
# Testing
url = 'https://www.ohjelmointiputka.net/tiedostot/junar.zip'
download_zipfile(url=url)
rawdata = read_zipfile_item('junar9.in')
data = perform_data(rawdata)
numbers = data
A = collate_moves(numbers)
print(A)
Idea 1: Is it helpful to compute permutation inversions somehow, http://mathworld.wolfram.com/PermutationInversion.html ? There are some algorithms to compute all permutation inversions in https://www.geeksforgeeks.org/counting-inversions/ but does this helps solve the problem? I think it is somehow related to compute the permutation inversions of the form (n,n+1).
Effort 3:
I tried to apply the idea from jferard's answer. I think it computest wrong answer how many rounds it takes to collect numbers [6, 1, 4, 10, 7, 2, 3, 9, 5, 8]
. It returns 4 but it takes five rounds, first 1, 2, 3, second 4, 5, third 6, 7, 8, fourth 9, and fifth 10.
def compute_original_rounds(M):
c = 1
for i in range(2, len(M)):
if M[i] < M[i-1]:
c += 1
return c
if __name__ == '__main__':
lines = [[3,1,5,4,2],[6, 1, 4, 10, 7, 2, 3, 9, 5, 8]]
verygoods = 0
lista = lines[1]
best = 0
drops = [0,0,0]
for k in range(2,len(lista)):
a = lista.index(k-1)<lista.index(k)
b = lista.index(k)<lista.index(k+1)
c = lista.index(k-1)<lista.index(k+1)
if a and b:
print("Zero inversions")
drops[0] += 1
if (not a and c) or (c and not b) or (b and not c) or (a and not c):
print("One inversion")
best = max(best,1)
drops[1] += 1
if not b and not a:
print("Two inversions")
best = max(best,2)
drops[2] += 1
ways = drops[2]
if ways == 0:
ways = drops[1]
if ways == 0:
ways = drops[0]
original_rounds = compute_original_rounds(lista)
print(original_rounds)
print(len(lista),original_rounds - best, ways)