Look at this code:
(cudavenv) C:\main\FemtoTest\Library\Python\libImageProcess\trunk\src\libImageProcess>python
Python 3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> from numba import cuda
>>> for i in range(26):
... arr = np.zeros((17, 8025472),dtype=np.uint32)
... d_arr = cuda.to_device(arr)
...
which runs successfully vs.
(cudavenv) C:\main\FemtoTest\Library\Python\libImageProcess\trunk\src\libImageProcess>python
Python 3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> from numba import cuda
>>> class M:
... def __init__(self):
... self.arr = np.zeros((17, 8025472),dtype=np.uint32)
... self.d_arr = None
...
>>> ms = [M() for _ in range(26)]
>>> for m in ms:
... m.d_arr = cuda.to_device(m.arr)
...
Traceback (most recent call last):
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\driver.py", line 741, in _attempt_allocation
allocator()
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\driver.py", line 756, in allocator
driver.cuMemAlloc(byref(ptr), bytesize)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\driver.py", line 294, in safe_cuda_api_call
self._check_error(fname, retcode)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\driver.py", line 329, in _check_error
raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [2] Call to cuMemAlloc results in CUDA_ERROR_OUT_OF_MEMORY
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\devices.py", line 225, in _require_cuda_context
return fn(*args, **kws)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\api.py", line 110, in to_device
to, new = devicearray.auto_device(obj, stream=stream, copy=copy)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\devicearray.py", line 693, in auto_device
devobj = from_array_like(obj, stream=stream)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\devicearray.py", line 631, in from_array_like
writeback=ary, stream=stream, gpu_data=gpu_data)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\devicearray.py", line 102, in __init__
gpu_data = devices.get_context().memalloc(self.alloc_size)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\driver.py", line 758, in memalloc
self._attempt_allocation(allocator)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\driver.py", line 748, in _attempt_allocation
allocator()
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\driver.py", line 756, in allocator
driver.cuMemAlloc(byref(ptr), bytesize)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\driver.py", line 294, in safe_cuda_api_call
self._check_error(fname, retcode)
File "C:\Users\alex\AppData\Local\Continuum\anaconda3\envs\cudavenv\lib\site-packages\numba\cuda\cudadrv\driver.py", line 329, in _check_error
raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [2] Call to cuMemAlloc results in CUDA_ERROR_OUT_OF_MEMORY
I think in the first instance I am reassigning d_arr to the device array each time so it only takes up that much memory. In the second case because there are 26 instances, it creates a new array on the device each time and eventually runs out of memory. What method do I need to call to delete the memory reference when I am done using it in the for loop? So that this can run without issue?