I am trying to learn a seq2seq model. An embedding layer is located in the encoder and it sometimes outputs nan value after some iterations. I cannot identify the reason. How can I solve this?? The problem is the first emb_layer in the forward function in the code below.
class TransformerEncoder(nn.Module):
def __init__(self, vocab_size, hidden_size=1024, num_layers=6, dropout=0.2, input_pad=1, batch_first=False, embedder=None, init_weight=0.1):
super(TransformerEncoder, self).__init__()
self.input_pad = input_pad
self.vocab_size = vocab_size
self.num_layers = num_layers
self.embedder = embedder
if embedder is not None:
self.emb_layer = embedder
else:
self.emb_layer = nn.Embedding(vocab_size, hidden_size, padding_idx=1)
self.positional_encoder = PositionalEncoder()
self.transformer_layers = nn.ModuleList()
for _ in range(num_layers):
self.transformer_layers.append(
TransformerEncoderBlock(num_heads=8, embedding_dim=1024, dropout=dropout))
def set_mask(self, inputs):
self.input_mask = (inputs == self.input_pad).unsqueeze(1)
def forward(self, inputs):
x = self.emb_layer(inputs)
x = self.positional_encoder(x)