I have a weird problem with the following data frame (see below). Both columns are 100% identical, as can be seen by running identical(x[,1], x[,2])
.
However, when I calculate the correlation between both columns (which mathematically is exactly 1), a check of this correlation against "1" gives FALSE and I've absolutely no idea why that is.
cor(x)[2,1]==1
cor(x[,1],x[,2])==1 # alternative
### Both give FALSE as results
However, when I use a randomly generated data set, I get the expected result, i.e. the correlation is identical to 1.
a=b=runif(50)
cor(a,b)==1
### Gives TRUE as result
I've no idea what's going on here. Any ideas?
Here's my data:
x=structure(list(ssc.check_loops = c(1, 1, 2, 2, 2, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2,
2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2,
2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2,
2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2,
2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2,
2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1,
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2,
2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2,
2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2,
1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,
2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2,
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2,
2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,
2, 2, 1, 1, 2, 2, 2, 2, 2, 2), Data.hNumber_of_loops = c(1, 1,
2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2,
2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2,
2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2,
2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1,
2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1,
2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1,
1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1,
2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1,
2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2,
2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1,
2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2,
2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2,
2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2,
2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2,
2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2,
2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2,
2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2)), class = "data.frame", row.names = c(NA,
-586L))