As @DeepSpace has suggested, you should try yourself to answer this question. You might also consider transforming your list into an array before using numpy.mean
. Use %timeit
with ipython
as follows:
In [1]: import random
In [2]: import numpy
In [3]: from functools import reduce
In [4]: l = random.sample(range(0, 100), 50) # generates a random list of 50 elements
numpy.mean
without converting to an np.array
In [5]: %timeit numpy.mean(l)
32.5 µs ± 2.82 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
numpy.mean
converting to an np.array
In [5]: a = numpy.array(a)
In [6]: %timeit numpy.mean(a)
17.6 µs ± 205 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
sum(l) / float(len(l))
In [5]: %timeit sum(l) / float(len(l)) # not required casting (float) in Python 3
774 ns ± 20.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
sum(l) / len(l)
In [5]: %timeit sum(l) / len(l)
623 ns ± 27.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
reduce
In [6]: reduce(lambda x, y: x + y, l) / len(l)
5.92 µs ± 514 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
From slowest to fastest:
numpy.mean(l)
without converting to array
numpy.mean(a)
after converting list to np.array
reduce(lambda x, y: x + y, l) / len(l)
sum(l) / float(len(l))
, this applies for Python 2 and 3
sum(l) / len(l)
# For Python 3, you don't need to cast (use float
)