Term rewriting is (in simple words) like the 2 examples you provided. (How to convert x + 0
to x
in a AST?). It is about pattern matching on AST's, and once there is a match, a conversion of an equivalent expression. It is also called a term rewriting rule.
Note that having a term rewriting rule is not the absolute or general solution of algebraic simplification. The general solution involves having many rewriting rules (you showed two of them), and apply them in a given AST repeatedly until no one success.
Then, the general solution involves the process or coordination on the application of the rewriting rules. i.e. in order to avoid the re-application of a rule that has previously failed, as an example.
There is not a unique way to do it. There are several systems. For proprietary systems it is not known because they keeps it in secrecy, but there are open source systems too, for example Mathomatica is written in C.
I recommend you to check the open system Fōrmulæ. In this, the process of coordination of rewriting rules (which is called "the reduction engine") is relatively simple. It is written in Java. The advantage of this system is that rewriting rules are not hardwired/hardcoded in the system or the reduction engine (they are hot pluggable). Coding a rewriting rule involves the process of pattern matching and conversion, but no when or how it will be called (it follows the Hollywood principle).
In the specific case of Fōrmulæ:
The reduction engine is based (in general terms) on the post-order tree traversal algorithm. so when a node is "visited", its sub-nodes were already visited and (possibly) transformed, but it is possible to alter such that flow (i.e. to solve the unwanted referentiation of a variable in an assignment x <- 5
). Note that it is not just a tree traversal, the AST is being actually changed in the process.
In order to efficiently manage the (possibly hundred or thousand) of rewriting rules, every rule has a type of expression where it is applicable, and when a single node is "visited", only the associated rules are checked for a match. For example, your 2 rules can only be applied to "addition" nodes of an AST.
Rewriting rules are not limited to algebraic simplification, they can be used in many other fields such as programming (Fōrmulæ is also its programming language, see examples of Fōrmulæ programs, or in automatic or assisted theorem proving.