My question is about what the compiler is doing in this case that optimizes the code way more than what I would think is possible.
Given this enum:
enum MyEnum {
Entry1,
Entry2,
... // Entry3..27 are the same, omitted for size.
Entry28,
Entry29
};
And this function:
bool MyFunction(MyEnum e)
{
if (
e == MyEnum::Entry1 ||
e == MyEnum::Entry3 ||
e == MyEnum::Entry8 ||
e == MyEnum::Entry14 ||
e == MyEnum::Entry15 ||
e == MyEnum::Entry18 ||
e == MyEnum::Entry21 ||
e == MyEnum::Entry22 ||
e == MyEnum::Entry25)
{
return true;
}
return false;
}
For the function, MSVC generates this assembly when compiled with -Ox optimization flag (Godbolt):
bool MyFunction(MyEnum) PROC ; MyFunction
cmp ecx, 24
ja SHORT $LN5@MyFunction
mov eax, 20078725 ; 01326085H
bt eax, ecx
jae SHORT $LN5@MyFunction
mov al, 1
ret 0
$LN5@MyFunction:
xor al, al
ret 0
Clang generates similar (slightly better, one less jump) assembly when compiled with -O3 flag:
MyFunction(MyEnum): # @MyFunction(MyEnum)
cmp edi, 24
ja .LBB0_2
mov eax, 20078725
mov ecx, edi
shr eax, cl
and al, 1
ret
.LBB0_2:
xor eax, eax
ret
What is happening here? I see that even if I add more enum comparisons to the function, the assembly that is generated does not actually become "more", it's only this magic number (20078725) that changes. That number depends on how many enum comparisons are happening in the function. I do not understand what is happening here.
The reason why I am looking at this is that I was wondering if it is good to write the function as above, or alternatively like this, with bitwise comparisons:
bool MyFunction2(MyEnum e)
{
if (
e == MyEnum::Entry1 |
e == MyEnum::Entry3 |
e == MyEnum::Entry8 |
e == MyEnum::Entry14 |
e == MyEnum::Entry15 |
e == MyEnum::Entry18 |
e == MyEnum::Entry21 |
e == MyEnum::Entry22 |
e == MyEnum::Entry25)
{
return true;
}
return false;
}
This results in this generated assembly with MSVC:
bool MyFunction2(MyEnum) PROC ; MyFunction2
xor edx, edx
mov r9d, 1
cmp ecx, 24
mov eax, edx
mov r8d, edx
sete r8b
cmp ecx, 21
sete al
or r8d, eax
mov eax, edx
cmp ecx, 20
cmove r8d, r9d
cmp ecx, 17
sete al
or r8d, eax
mov eax, edx
cmp ecx, 14
cmove r8d, r9d
cmp ecx, 13
sete al
or r8d, eax
cmp ecx, 7
cmove r8d, r9d
cmp ecx, 2
sete dl
or r8d, edx
test ecx, ecx
cmove r8d, r9d
test r8d, r8d
setne al
ret 0
Since I do not understand what happens in the first case, I can not really judge which one is more efficient in my case.