I'd like to implement a cellular automaton (CA) in Julia. Dimensions should be wrapped, this means: the left neighbor of the leftmost cell is the rightmost cell etc.
One crucial question is: how to get the neighbors of one cell to compute it's state in the next generation? As dimensions should be wrapped and Julia does not allow negative indices (as in Python) i had this idea:
Considered a 1D CA, one generation is a one-dimensional array:
0 0 1 0 0
What if we create a two dimensional Array, where the first row is shifted right and the third is shifted left, like this:
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
Now, the first column contain the states of the first cell and it's neighbors etc.
i think this can easily be generalized for two and more dimensions.
First question: do you think this is a good idea, or is this a wrong track?
EDIT: Answer to first question was no, second Question and code example discarded.
Second question: If the approach is basically ok, please have a look at the following sketch:
EDIT: Other approach, here is a stripped down version of a 1D CA, using mod1() for getting neighborhood-indices, as Bogumił Kamiński suggested.
for any cell: - A array of all indices - B array of all neighborhood states - C states converted to one integer - D lookup next state
function digits2int(digits, base=10)
int = 0
for digit in digits
int = int * base + digit
end
return int
end
gen = [0,0,0,0,0,1,0,0,0,0,0]
rule = [0,1,1,1,1,0,0,0]
function nextgen(gen, rule)
values = [mod1.(x .+ [-1,0,1], size(gen)) for x in 1:length(gen)] # A
values = [gen[value] for value in values] # B
values = [digits2int(value, 2) for value in values] # C
values = [rule[value+1] for value in values] # D
return values
end
for _ in 1:100
global gen
println(gen)
gen = nextgen(gen, rule)
end
Next step should be to extend it to two dimensions, will try it now...