I have made my first ANN with Keras. It's a Linear Regression Model with 5 features and 1 output. I made a plot with "MSE" and "Loss function" and these are the results. Can we say that it is a good model? In addition R^2 = 0.91 . Is this the right way?
classifier = Sequential()
classifier.add(Dense(5, input_dim=5,kernel_initializer='normal',activation='relu'))
classifier.add(Dense(5, activation='relu'))
classifier.add(Dense(1,activation='linear'))
classifier.compile(loss='mse', optimizer='adam', metrics=['mse','mae'])
history = classifier.fit(X_train, y_train, batch_size=10, validation_data=(X_test, y_test), epochs=200, verbose=0)
y_pred=classifier.predict(X_test)
train_mse=classifier.evaluate(X_train, y_train, verbose=0)
plt.title('Loss / Mean Squared Error')
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()