I have the following input which is 2D array. And I would like to iterate over each row to do some calculation but when I print the output it seems to iterate only on the first row of the array. Any contribution would be appreciated.
2D numpy array corr_ret
:
[[-6.33870149e-04 8.55011683e-04 -1.17983411e-03 7.91091491e-04
2.62196784e-04 -4.43688931e-05 -6.45968376e-06 -1.12538630e-03
2.15421763e-03 -3.16434832e-03 2.60707339e-03 1.50132673e-03
-1.26622898e-03 -6.60251486e-04 5.02396330e-04 2.11832581e-04
-7.69597583e-04 -3.29756120e-03 -1.24210577e-03 -4.62660468e-04
-3.49262651e-04 -3.43464642e-04 -2.55611240e-04 5.54536845e-04
-2.01366145e-03 -2.87531971e-04 -5.34641032e-04 1.72644604e-03
5.76858322e-04 -2.29174764e-03]
[ 4.70029370e-04 1.77020781e-03 -1.05050155e-03 -6.18841938e-04
1.16485579e-03 -6.00092725e-05 1.05676386e-04 -1.48243613e-03
3.72088647e-03 -1.75323439e-03 1.09075078e-03 9.89241541e-05
-1.59512783e-03 -7.11380812e-04 1.73537083e-03 8.78393781e-04
-9.29723278e-04 -1.53385019e-03 1.20444451e-04 -4.84107094e-04
-7.83347205e-04 1.18777621e-03 -1.54999170e-03 8.35286745e-05
-1.74472610e-03 9.83476064e-04 -8.82693488e-04 1.58099698e-03
3.15406396e-03 -1.26301009e-04]
[-1.06896577e-03 8.31379672e-04 1.54808513e-04 -1.35452237e-03
-2.19101603e-04 -7.26696656e-04 -2.93275089e-04 -6.88305530e-04
2.89300411e-03 -2.38832429e-03 -7.67452518e-04 -2.40866147e-04
-2.11929402e-03 -7.45901508e-04 5.02921628e-04 1.77651468e-04
-2.08574762e-03 -1.80218000e-03 -1.23287491e-03 -7.47521806e-04
-7.80485878e-04 6.15345860e-04 -1.40945995e-03 8.74548883e-04
-2.78711058e-03 1.92856732e-03 5.73070388e-04 1.29301575e-03
1.89158005e-03 8.65315240e-04]]
My code:
for row in corr_ret:
seed = 1
So = corr_ret[0] #the first cell of the row
N = 30
mu = corr_ret.mean()/N
sigma = corr_ret.std()
print(sigma)
T = 1
My output:
[-6.33870149e-04 8.55011683e-04 -1.17983411e-03 7.91091491e-04
2.62196784e-04 -4.43688931e-05 -6.45968376e-06 -1.12538630e-03
2.15421763e-03 -3.16434832e-03 2.60707339e-03 1.50132673e-03
-1.26622898e-03 -6.60251486e-04 5.02396330e-04 2.11832581e-04
-7.69597583e-04 -3.29756120e-03 -1.24210577e-03 -4.62660468e-04
-3.49262651e-04 -3.43464642e-04 -2.55611240e-04 5.54536845e-04
-2.01366145e-03 -2.87531971e-04 -5.34641032e-04 1.72644604e-03
5.76858322e-04 -2.29174764e-03]
-5.2605086588854405e-06
0.0013733187643799106
[-6.33870149e-04 8.55011683e-04 -1.17983411e-03 7.91091491e-04
2.62196784e-04 -4.43688931e-05 -6.45968376e-06 -1.12538630e-03
2.15421763e-03 -3.16434832e-03 2.60707339e-03 1.50132673e-03
-1.26622898e-03 -6.60251486e-04 5.02396330e-04 2.11832581e-04
-7.69597583e-04 -3.29756120e-03 -1.24210577e-03 -4.62660468e-04
-3.49262651e-04 -3.43464642e-04 -2.55611240e-04 5.54536845e-04
-2.01366145e-03 -2.87531971e-04 -5.34641032e-04 1.72644604e-03
5.76858322e-04 -2.29174764e-03]
-5.2605086588854405e-06
0.0013733187643799106
[-6.33870149e-04 8.55011683e-04 -1.17983411e-03 7.91091491e-04
2.62196784e-04 -4.43688931e-05 -6.45968376e-06 -1.12538630e-03
2.15421763e-03 -3.16434832e-03 2.60707339e-03 1.50132673e-03
-1.26622898e-03 -6.60251486e-04 5.02396330e-04 2.11832581e-04
-7.69597583e-04 -3.29756120e-03 -1.24210577e-03 -4.62660468e-04
-3.49262651e-04 -3.43464642e-04 -2.55611240e-04 5.54536845e-04
-2.01366145e-03 -2.87531971e-04 -5.34641032e-04 1.72644604e-03
5.76858322e-04 -2.29174764e-03]
-5.2605086588854405e-06
0.0013733187643799106