0

I have previously installed Tensorflow on several machines but am stuck installing it on my new laptop with RTX 2060. No matter what combination of versions I try, I get the same error. I found similar issues online and it seems like the problem is the version conflict of cudnn and tensorflow.

Here's my installation and the error. Tensorflow installation

Currently, I have Cuda v10.0.130 and cudnn-10.0-windows10-x64-v7.6.0.64 to match the installation of tensorflow, like in the image. tf__version__ = 1.13.1. Python version is 3.6. THe cudnn libraries are copied in Cuda installation folder. I also tried with Tensorflow 1.14 and python 3.7 and am getting the same results.

I'm installing tensorflow with Anaconda conda install tensorflow-gpu

Traceback (most recent call last):

  File "<ipython-input-1-c77ea08f5c30>", line 1, in <module>
    runfile('C:/Users/mazat/Documents/Python/MVTools/player_detector/player_detector_testing.py', wdir='C:/Users/mazat/Documents/Python/MVTools/player_detector')

  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 827, in runfile
    execfile(filename, namespace)

  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 110, in execfile
    exec(compile(f.read(), filename, 'exec'), namespace)

  File "C:/Users/mazat/Documents/Python/MVTools/player_detector/player_detector_testing.py", line 399, in <module>
    player_detector_run()

  File "C:/Users/mazat/Documents/Python/MVTools/player_detector/player_detector_testing.py", line 392, in player_detector_run
    glavnaya(dropbox_folder,gamename,mvstatus)

  File "C:/Users/mazat/Documents/Python/MVTools/player_detector/player_detector_testing.py", line 247, in glavnaya
    __,box1,score = yolo_class.detect_images(im2[ii].astype('uint8'))

  File "C:\Users\mazat\Documents\Python\MVTools\player_detector\yolo3\yolo3.py", line 181, in detect_images
    K.learning_phase(): 0

  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 929, in run
    run_metadata_ptr)

  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _run
    feed_dict_tensor, options, run_metadata)

  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 1328, in _do_run
    run_metadata)

  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\client\session.py", line 1348, in _do_call
    raise type(e)(node_def, op, message)

UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
     [[node conv2d_1/convolution (defined at C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\keras\backend\tensorflow_backend.py:3650) ]]

Caused by op 'conv2d_1/convolution', defined at:
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\spyder_kernels\console\__main__.py", line 11, in <module>
    start.main()
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\spyder_kernels\console\start.py", line 318, in main
    kernel.start()
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\ipykernel\kernelapp.py", line 563, in start
    self.io_loop.start()
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tornado\platform\asyncio.py", line 148, in start
    self.asyncio_loop.run_forever()
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\asyncio\base_events.py", line 438, in run_forever
    self._run_once()
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\asyncio\base_events.py", line 1451, in _run_once
    handle._run()
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\asyncio\events.py", line 145, in _run
    self._callback(*self._args)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tornado\ioloop.py", line 690, in <lambda>
    lambda f: self._run_callback(functools.partial(callback, future))
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tornado\ioloop.py", line 743, in _run_callback
    ret = callback()
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tornado\gen.py", line 787, in inner
    self.run()
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tornado\gen.py", line 748, in run
    yielded = self.gen.send(value)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\ipykernel\kernelbase.py", line 365, in process_one
    yield gen.maybe_future(dispatch(*args))
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tornado\gen.py", line 209, in wrapper
    yielded = next(result)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\ipykernel\kernelbase.py", line 272, in dispatch_shell
    yield gen.maybe_future(handler(stream, idents, msg))
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tornado\gen.py", line 209, in wrapper
    yielded = next(result)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\ipykernel\kernelbase.py", line 542, in execute_request
    user_expressions, allow_stdin,
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tornado\gen.py", line 209, in wrapper
    yielded = next(result)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\ipykernel\ipkernel.py", line 294, in do_execute
    res = shell.run_cell(code, store_history=store_history, silent=silent)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\ipykernel\zmqshell.py", line 536, in run_cell
    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\IPython\core\interactiveshell.py", line 2855, in run_cell
    raw_cell, store_history, silent, shell_futures)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in _run_cell
    return runner(coro)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\IPython\core\async_helpers.py", line 68, in _pseudo_sync_runner
    coro.send(None)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\IPython\core\interactiveshell.py", line 3058, in run_cell_async
    interactivity=interactivity, compiler=compiler, result=result)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\IPython\core\interactiveshell.py", line 3249, in run_ast_nodes
    if (await self.run_code(code, result,  async_=asy)):
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\IPython\core\interactiveshell.py", line 3326, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-1-c77ea08f5c30>", line 1, in <module>
    runfile('C:/Users/mazat/Documents/Python/MVTools/player_detector/player_detector_testing.py', wdir='C:/Users/mazat/Documents/Python/MVTools/player_detector')
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 827, in runfile
    execfile(filename, namespace)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\spyder_kernels\customize\spydercustomize.py", line 110, in execfile
    exec(compile(f.read(), filename, 'exec'), namespace)
  File "C:/Users/mazat/Documents/Python/MVTools/player_detector/player_detector_testing.py", line 399, in <module>
    player_detector_run()
  File "C:/Users/mazat/Documents/Python/MVTools/player_detector/player_detector_testing.py", line 392, in player_detector_run
    glavnaya(dropbox_folder,gamename,mvstatus)
  File "C:/Users/mazat/Documents/Python/MVTools/player_detector/player_detector_testing.py", line 137, in glavnaya
    yolo_class=YOLO(model_name,script_dir, res)
  File "C:\Users\mazat\Documents\Python\MVTools\player_detector\yolo3\yolo3.py", line 39, in __init__
    self.boxes, self.scores, self.classes = self.generate()
  File "C:\Users\mazat\Documents\Python\MVTools\player_detector\yolo3\yolo3.py", line 68, in generate
    if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
  File "C:\Users\mazat\Documents\Python\MVTools\player_detector\yolo3\model.py", line 72, in yolo_body
    darknet = Model(inputs, darknet_body(inputs))
  File "C:\Users\mazat\Documents\Python\MVTools\player_detector\yolo3\model.py", line 48, in darknet_body
    x = DarknetConv2D_BN_Leaky(32, (3,3))(x)
  File "C:\Users\mazat\Documents\Python\MVTools\player_detector\yolo3\utils.py", line 16, in <lambda>
    return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs)
  File "C:\Users\mazat\Documents\Python\MVTools\player_detector\yolo3\utils.py", line 16, in <lambda>
    return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\keras\engine\base_layer.py", line 457, in __call__
    output = self.call(inputs, **kwargs)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\keras\layers\convolutional.py", line 171, in call
    dilation_rate=self.dilation_rate)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\keras\backend\tensorflow_backend.py", line 3650, in conv2d
    data_format=tf_data_format)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 851, in convolution
    return op(input, filter)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 966, in __call__
    return self.conv_op(inp, filter)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 591, in __call__
    return self.call(inp, filter)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 208, in __call__
    name=self.name)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 1026, in conv2d
    data_format=data_format, dilations=dilations, name=name)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper
    op_def=op_def)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func
    return func(*args, **kwargs)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\ops.py", line 3300, in create_op
    op_def=op_def)
  File "C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\tensorflow\python\framework\ops.py", line 1801, in __init__
    self._traceback = tf_stack.extract_stack()

UnknownError (see above for traceback): Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
     [[node conv2d_1/convolution (defined at C:\Users\mazat\Anaconda3\envs\tf_gpu\lib\site-packages\keras\backend\tensorflow_backend.py:3650) ]]

Here's also result of conda listconda list 1 conda list 2 conda list 3 conda list 4

Same issue if I don't force python or tensorflow versions and install the default tensorflow 1.14 and python 3.7

(tf_gpu_tds) C:\Users\mazat>conda list
# packages in environment at C:\Users\mazat\Anaconda3\envs\tf_gpu_tds:
#
# Name                    Version                   Build  Channel
_tflow_select             2.1.0                       gpu
absl-py                   0.8.0                    py37_0
alabaster                 0.7.12                   py37_0
asn1crypto                0.24.0                   py37_0
astor                     0.8.0                    py37_0
astroid                   2.3.1                    py37_0
attrs                     19.1.0                   py37_1
babel                     2.7.0                      py_0
backcall                  0.1.0                    py37_0
blas                      1.0                         mkl
bleach                    3.1.0                    py37_0
ca-certificates           2019.9.11            hecc5488_0    conda-forge
certifi                   2019.9.11                py37_0
cffi                      1.12.3           py37h7a1dbc1_0
chardet                   3.0.4                 py37_1003
cloudpickle               1.2.2                      py_0
colorama                  0.4.1                    py37_0
cryptography              2.7              py37h7a1dbc1_0
cudatoolkit               10.0.130                      0
cudnn                     7.6.0                cuda10.0_0
cycler                    0.10.0                     py_1    conda-forge
cytoolz                   0.10.0           py37hfa6e2cd_0    conda-forge
dask-core                 2.5.0                      py_0    conda-forge
decorator                 4.4.0                    py37_1
defusedxml                0.6.0                      py_0
docutils                  0.15.2                   py37_0
entrypoints               0.3                      py37_0
freetype                  2.9.1                ha9979f8_1
gast                      0.3.2                      py_0
grpcio                    1.16.1           py37h351948d_1
h5py                      2.9.0            py37h5e291fa_0
hdf5                      1.10.4               h7ebc959_0
icc_rt                    2019.0.0             h0cc432a_1
icu                       58.2                 ha66f8fd_1
idna                      2.8                      py37_0
imageio                   2.5.0                    py37_0    conda-forge
imagesize                 1.1.0                    py37_0
intel-openmp              2019.4                      245
ipykernel                 5.1.2            py37h39e3cac_0
ipython                   7.8.0            py37h39e3cac_0
ipython_genutils          0.2.0                    py37_0
isort                     4.3.21                   py37_0
jedi                      0.15.1                   py37_0
jinja2                    2.10.1                   py37_0
joblib                    0.13.2                   py37_0
jpeg                      9b                   hb83a4c4_2
jsonschema                3.0.2                    py37_0
jupyter_client            5.3.3                    py37_1
jupyter_core              4.5.0                      py_0
keras-applications        1.0.8                      py_0
keras-base                2.2.4                    py37_0    anaconda
keras-gpu                 2.2.4                         0    anaconda
keras-preprocessing       1.1.0                      py_1
keyring                   18.0.0                   py37_0
kiwisolver                1.1.0            py37he980bc4_0    conda-forge
lazy-object-proxy         1.4.2            py37he774522_0
libpng                    1.6.37               h2a8f88b_0
libprotobuf               3.9.2                h7bd577a_0
libsodium                 1.0.16               h9d3ae62_0
libtiff                   4.0.10               hb898794_2
markdown                  3.1.1                    py37_0
markupsafe                1.1.1            py37he774522_0
matplotlib-base           3.1.1            py37h2852a4a_1    conda-forge
mccabe                    0.6.1                    py37_1
mistune                   0.8.4            py37he774522_0
mkl                       2019.4                      245
mkl-service               2.3.0            py37hb782905_0
mkl_fft                   1.0.14           py37h14836fe_0
mkl_random                1.1.0            py37h675688f_0
nbconvert                 5.6.0                    py37_1
nbformat                  4.4.0                    py37_0
networkx                  2.3                        py_0    conda-forge
numpy                     1.16.5           py37h19fb1c0_0
numpy-base                1.16.5           py37hc3f5095_0
numpydoc                  0.9.1                      py_0
olefile                   0.46                     py37_0
openssl                   1.1.1c               hfa6e2cd_0    conda-forge
packaging                 19.2                       py_0
pandas                    0.25.1           py37ha925a31_0    anaconda
pandoc                    2.2.3.2                       0
pandocfilters             1.4.2                    py37_1
parso                     0.5.1                      py_0
pickleshare               0.7.5                    py37_0
pillow                    6.1.0            py37hdc69c19_0
pip                       19.2.3                   py37_0
prompt_toolkit            2.0.9                    py37_0
protobuf                  3.9.2            py37h33f27b4_0
psutil                    5.6.3            py37he774522_0
pycodestyle               2.5.0                    py37_0
pycparser                 2.19                     py37_0
pyflakes                  2.1.1                    py37_0
pygments                  2.4.2                      py_0
pylint                    2.4.2                    py37_0
pyopenssl                 19.0.0                   py37_0
pyparsing                 2.4.2                      py_0
pyqt                      5.9.2            py37h6538335_2
pyreadline                2.1                      py37_1
pyrsistent                0.15.4           py37he774522_0
pysocks                   1.7.1                    py37_0
python                    3.7.4                h5263a28_0
python-dateutil           2.8.0                    py37_0
pytz                      2019.2                     py_0
pywavelets                1.0.3            py37h452e1ab_1    conda-forge
pywin32                   223              py37hfa6e2cd_1
pyyaml                    5.1.2            py37he774522_0    anaconda
pyzmq                     18.1.0           py37ha925a31_0
qt                        5.9.7            vc14h73c81de_0
qtawesome                 0.6.0                      py_0
qtconsole                 4.5.5                      py_0
qtpy                      1.9.0                      py_0
requests                  2.22.0                   py37_0
rope                      0.14.0                     py_0
scikit-image              0.15.0           py37he350917_2    conda-forge
scikit-learn              0.21.3           py37h6288b17_0
scipy                     1.3.1            py37h29ff71c_0
setuptools                41.2.0                   py37_0
sip                       4.19.8           py37h6538335_0
six                       1.12.0                   py37_0
snowballstemmer           1.9.1                      py_0
sphinx                    2.2.0                      py_0
sphinxcontrib-applehelp   1.0.1                      py_0
sphinxcontrib-devhelp     1.0.1                      py_0
sphinxcontrib-htmlhelp    1.0.2                      py_0
sphinxcontrib-jsmath      1.0.1                      py_0
sphinxcontrib-qthelp      1.0.2                      py_0
sphinxcontrib-serializinghtml 1.1.3                      py_0
spyder                    3.3.6                    py37_0
spyder-kernels            0.5.2                    py37_0
sqlite                    3.29.0               he774522_0
tensorboard               1.14.0           py37he3c9ec2_0
tensorflow                1.14.0          gpu_py37h5512b17_0
tensorflow-base           1.14.0          gpu_py37h55fc52a_0
tensorflow-estimator      1.14.0                     py_0
tensorflow-gpu            1.14.0               h0d30ee6_0
termcolor                 1.1.0                    py37_1
testpath                  0.4.2                    py37_0
tk                        8.6.8                hfa6e2cd_0
toolz                     0.10.0                     py_0    conda-forge
tornado                   6.0.3            py37he774522_0
traitlets                 4.3.2                    py37_0
urllib3                   1.24.2                   py37_0
vc                        14.1                 h0510ff6_4
vs2015_runtime            14.16.27012          hf0eaf9b_0
wcwidth                   0.1.7                    py37_0
webencodings              0.5.1                    py37_1
werkzeug                  0.16.0                     py_0
wheel                     0.33.6                   py37_0
win_inet_pton             1.1.0                    py37_0
wincertstore              0.2                      py37_0
wrapt                     1.11.2           py37he774522_0
xz                        5.2.4                h2fa13f4_4
yaml                      0.1.7            vc14h4cb57cf_1  [vc14]  anaconda
zeromq                    4.3.1                h33f27b4_3
zlib                      1.2.11               h62dcd97_3
zstd                      1.3.7                h508b16e_0

Mike Azatov
  • 402
  • 6
  • 22
  • Possible duplicate of [Failed to get convolution algorithm. This is probably because cuDNN failed to initialize,](https://stackoverflow.com/questions/53698035/failed-to-get-convolution-algorithm-this-is-probably-because-cudnn-failed-to-in) – Physicing Sep 30 '19 at 14:51
  • I saw that one. It looks like my issue is #3. You have incompatible versions of CUDA, TensorFlow, NVIDIA drivers, etc. However since that post was made there were updates to both tensorflow, cuda, and cudnn. So, most likely it has to do with incompatability of new versions – Mike Azatov Sep 30 '19 at 14:57
  • In my opinion, installing with the Anaconda is actually the **safest** choice for incompatibility but, I somehow suspect that your driver version is below 410. – Physicing Sep 30 '19 at 15:04
  • Which driver is below 410? – Mike Azatov Sep 30 '19 at 15:09
  • Your Nvidia driver version. If your laptop is new, there's a possibility that driver version is like 388.x . You can check the version from the nvidia control panel and system information at the left-bottom end. – Physicing Sep 30 '19 at 15:11
  • No the driver is 436.30. I downloaded the new one – Mike Azatov Sep 30 '19 at 15:15
  • Could you please share your `conda list` result with image? – Physicing Sep 30 '19 at 15:19
  • Sure thing. Just added them to the question. It's a huge list so there are 4 images! – Mike Azatov Sep 30 '19 at 15:26
  • Also added the result of conda list from a different environment where I tried to install the default tensorflow 1.14 with python 3.7 – Mike Azatov Sep 30 '19 at 15:33
  • I'm trying to compare with mine in terms of `cudatoolkit` and `cudnn` but the only difference is mine has has Build : 1 whereas yours is Build : 0 but the build string is meaningless in that case. I will let you know if I will find that may be helpful for you. – Physicing Sep 30 '19 at 15:53
  • Thanks for your help. I have the same exact versions on the server I use and it works fine there. I wonder if it has something to do with my installtion of Cuda and cudnn on my laptop. Previously I always 1) installed Cuda 2) Downloaded Cudnn and copied it to Cuda installation folder. I wonder, now that cuda is part of tensorflow-gpu build on conda if it's somehow conflicting with my installatioin of Cuda – Mike Azatov Sep 30 '19 at 16:40
  • It certainly isn't a problem. For one of my envs, it uses cuda9.0 but the pasted parts that I've done is cuda10.0 and they don't conflict. – Physicing Sep 30 '19 at 16:45
  • The only other difference I found was that my laptop has a DCH Nvidia driver while my other computer has a standard driver. I doubt it but could DCH be potentially an issue? – Mike Azatov Sep 30 '19 at 17:19
  • Please do not add Code or errors as Images to your post. See here (https://meta.stackoverflow.com/questions/285551/why-not-upload-images-of-code-errors-when-asking-a-question) why. – Hagbard Jul 22 '20 at 11:12

2 Answers2

3

In the end, I got my answer from this github issue. After several reinstalls and restarts, these lines of code started making all the difference:

import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
tf.keras.backend.set_session(tf.Session(config=config))

I'm still not sure what was happening, but I guess my suggestion would be to make sure you restart your computer often enough. Now both environments with TF1.13.1 + Python 3.6 and TF1.14+Python 3.7 work for me.

Please note that, due to compatibility reasons, the code for newer (>= 2.0) versions of tensorflow is:

import tensorflow as tf
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))
Hagbard
  • 3,430
  • 5
  • 28
  • 64
Mike Azatov
  • 402
  • 6
  • 22
0

Since the compatibility issue is the most probable option as we discussed in the comment sections, I found the tested versions of tensorflow with respect to the CUDA and cuDNN versions. You can find it in here.

Please feel free to update the status of your problem after you setup your environment according to the given link.

I hope it would be resolved.

EDIT: In case you're in Windows, I'd like to update a new link

Physicing
  • 532
  • 5
  • 17
  • Thanks, I am using Win10. I'll give this a shot. I would strongly prefer to install it with Anaconda as all my other work is done through it and it would be an easy move to a new laptop. – Mike Azatov Oct 01 '19 at 11:49