I have several - let's say three - data frames that contain different rows (sometimes they can overlap) of another data frame. The columns are the same for all three dfs. I want now to create final data frame that will contain all the rows from three mentioned data frames. Moreover I need to generate a column for the final df that will contain information in which one of the first three dfs this particular row is included.
Example below
Original data frame:
original_df = pd.DataFrame(np.array([[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]]), columns = ['label1','label2'])
Three dfs containing different pieces of the original df:
a = original_df.loc[0:1, columns]
b = original_df.loc[2:2, columns]
c = original_df.loc[3:, columns]
I want to get the following data frame:
final_df = pd.DataFrame(np.array([[1,1,'a'],[2,2,'a'],[3,3,'b'],[4,4,'c'],\
[5,5,'c'],[6,6,'c']]), columns = ['label1','label2', 'from which df this row'])
or simply use integers to mark from which df the row is:
final_df = pd.DataFrame(np.array([[1,1,1],[2,2,1],[3,3,2],[4,4,3],\
[5,5,3],[6,6,3]]), columns = ['label1','label2', 'from which df this row'])
Thank you in advance!