1

I am trying to delete Columns that have more than 3 or k consecutive NaNs. New to pandas. Any help is appreciated.

Data looks like

200  2000 7632
123  NaN  1232
98   NaN  12324
4231 NaN  673
87   76   1000
Yash
  • 31
  • 1
  • 6

3 Answers3

2

Maybe not the most efficient solution, but easy to implement using more-itertools: for each column try to locate the first tuple of 3 NaNs, if found add this column to list of columns to drop.

import pandas as pd
import more_itertools as mit

df = pd.DataFrame({'col1': [1,2,3,4], 'col2': [None,None,5,None], 'col3': [6,None,None,None]})

to_drop = []
for c in df:
  try:
    next(mit.locate(df[c].isna(), lambda *x: all(x) == True, 3))
    to_drop.append(c)
  except:
    pass
df = df.drop(to_drop, 1)
print(df)

Result:

   col1  col2
0     1   NaN
1     2   NaN
2     3   5.0
3     4   NaN
Stef
  • 28,728
  • 2
  • 24
  • 52
2

You can do something like this:

df=pd.DataFrame()
df['col1']=[np.nan,1,2,np.nan,3,np.nan,np.nan]
df['col2']=[np.nan,np.nan,np.nan,np.nan,1,2,3]
df['col3']=[1,2,3,4,np.nan,np.nan,np.nan]
print(df)

   col1  col2  col3
0   NaN   NaN   1.0
1   1.0   NaN   2.0
2   2.0   NaN   3.0
3   NaN   NaN   4.0
4   3.0   1.0   NaN
5   NaN   2.0   NaN
6   NaN   3.0   NaN

df_filtered=df.loc[:,(df.notna().cumsum().shift().apply(lambda x: x.value_counts()).fillna(0)<3).all()]
print(df_filtered)

  col1
0   NaN
1   1.0
2   2.0
3   NaN
4   3.0
5   NaN
6   NaN

Note: this eliminates if it has 3 or more, to eliminate from 4, you must replace the 3 with 4

ansev
  • 30,322
  • 5
  • 17
  • 31
1

You can use this simple example:

import pandas as pd
import numpy as np

df = pd.DataFrame({'col1':[1,2,3,4], 'col2':[None,None,None,5], 'col3':[6, None, None, 5] })

df:

    col1    col2    col3
0   1       NaN     6.0
1   2       NaN     NaN
2   3       NaN     NaN
3   4       5.0     5.0

EDIT

Drop consecutive NaNs:

bad_cols=[]
for col in list(df):
    for i in range(df.shape[0]-2):
        w = df.loc[i:i+2, col]
        if np.sum(w.isna()) == 3:
            bad_cols.append(col)
            break
df.drop(bad_cols, axis=1, inplace=True)

df:

    col1    col3
0   1       6.0
1   2       NaN
2   3       NaN
3   4       5.0
Manualmsdos
  • 1,505
  • 3
  • 11
  • 22