DOESN'T WORK:
from tensorflow.python.keras.layers import Input, Dense
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.optimizers import Nadam
import numpy as np
ipt = Input(shape=(4,))
out = Dense(1, activation='sigmoid')(ipt)
model = Model(ipt, out)
model.compile(optimizer=Nadam(lr=1e-4), loss='binary_crossentropy')
X = np.random.randn(32,4)
Y = np.random.randint(0,2,(32,1))
model.train_on_batch(X,Y)
WORKS: remove .python
from above's imports.
What's the deal, and how to fix?
ADDITIONAL INFO:
- CUDA 10.0.130, cuDNN 7.4.2, Python 3.7.4, Windows 10
tensorflow
,tensorflow-gpu
v2.0.0, and Keras 2.3.0 via pip, all else via Anaconda 3- Per DEBUG 1, I note
pip
installs ther2.0
branch rather thanmaster
; manually overwriting localtensorflow_core.python
folder withmaster
's breaks everything - but doing so for a select-few files doesn't, though error persists
DEBUG 1: files difference
This holds for my local installation, rather than TF's Github branches master
or r2.0
; Github files lack api/_v2
for some reason:
from tensorflow import keras
print(keras.__file__)
from tensorflow.python import keras
print(keras.__file__)
[1] D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\api\_v2\keras\__init__.py
[2] D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\__init__.py
Looking into each __init__
for Optimizer
:
# [1]
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2 as Optimizer
# [2]
from tensorflow.python.keras import optimizers
# in python.keras.optimizers.py:
# all imports are from tensorflow.python
class Optimizer(object): # <--- does NOT use optimizer_v2 for Optimizer
This appears to root the problem, as below works:
from tensorflow.python.keras.layers import Input, Dense
from tensorflow.python.keras.models import Model
from tensorflow.keras.optimizers import Nadam
This is strange, however, as the direct import keras
doesn't use optimizer_v2
either, though the definition of Optimizer
in keras.optimizers
does differ.
DEBUG 2: execution difference
Debugging side-by-side, while both use the same training.py, execution diverges fairly quickly:
### TF.KERAS
if self._experimental_run_tf_function: # TRUE
### TF.PYTHON.KERAS
if self._experimental_run_tf_function: # FALSE
Former proceeds to call training_v2_utils.train_on_batch(...)
and returns thereafter, latter self._standardize_user_data(...)
and others before ultimately failing.
DEBUG 3 (+ solution?): the fail-line
if None in grads: # <-- in traceback
Inserting print(None in grads)
right above it yields the exact same error - thus, it appears related to TF2 iterable ops -- this works:
if any([g is None for g in grads]): # <-- works; similar but not equivalent Python logic
Unsure yet if it's a complete fix, still debugging -- update: started a Github Pull Request
Full error trace:
File "<ipython-input-1-2db039c052cf>", line 20, in <module>
model.train_on_batch(X,Y)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 1017, in train_on_batch
self._make_train_function()
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 2116, in _make_train_function
params=self._collected_trainable_weights, loss=self.total_loss)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\optimizers.py", line 653, in get_updates
grads = self.get_gradients(loss, params)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\optimizers.py", line 92, in get_gradients
if None in grads:
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\ops\math_ops.py", line 1336, in tensor_equals
return gen_math_ops.equal(self, other)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py", line 3626, in equal
name=name)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\framework\op_def_library.py", line 545, in _apply_op_helper
(input_name, err))
ValueError: Tried to convert 'y' to a tensor and failed. Error: None values not supported.