There are some similar issues I faced recently. Let me show them below with your case.
I am creating two dataframes with the same data
scala> val df_a = Seq((1, 2, "as"), (2,3,"ds"), (3,4,"ew"), (4, 1, "re"), (3,1,"ht")).toDF("a", "b", "c")
df_a: org.apache.spark.sql.DataFrame = [a: int, b: int ... 1 more field]
scala> val df_b = Seq((1, 2, "as"), (2,3,"ds"), (3,4,"ew"), (4, 1, "re"), (3,1,"ht")).toDF("a", "b", "c")
df_b: org.apache.spark.sql.DataFrame = [a: int, b: int ... 1 more field]
Joining them
scala> val df = df_a.join(df_b, df_a("b") === df_b("a"), "leftouter")
df: org.apache.spark.sql.DataFrame = [a: int, b: int ... 4 more fields]
scala> df.show
+---+---+---+---+---+---+
| a| b| c| a| b| c|
+---+---+---+---+---+---+
| 1| 2| as| 2| 3| ds|
| 2| 3| ds| 3| 1| ht|
| 2| 3| ds| 3| 4| ew|
| 3| 4| ew| 4| 1| re|
| 4| 1| re| 1| 2| as|
| 3| 1| ht| 1| 2| as|
+---+---+---+---+---+---+
Let's drop a column that is not present in the above dataframe
+---+---+---+---+---+---+
| a| b| c| a| b| c|
+---+---+---+---+---+---+
| 1| 2| as| 2| 3| ds|
| 2| 3| ds| 3| 1| ht|
| 2| 3| ds| 3| 4| ew|
| 3| 4| ew| 4| 1| re|
| 4| 1| re| 1| 2| as|
| 3| 1| ht| 1| 2| as|
+---+---+---+---+---+---+
Ideally we will expect spark to throw an error, but it executes successfully.
Now, if you drop a column from the above dataframe
scala> df.drop("a").show
+---+---+---+---+
| b| c| b| c|
+---+---+---+---+
| 2| as| 3| ds|
| 3| ds| 1| ht|
| 3| ds| 4| ew|
| 4| ew| 1| re|
| 1| re| 2| as|
| 1| ht| 2| as|
+---+---+---+---+
It drops all the columns with provided column name in the input dataframe.
If you want to drop specific columns, it should be done as below:
scala> df.drop(df_a("a")).show()
+---+---+---+---+---+
| b| c| a| b| c|
+---+---+---+---+---+
| 2| as| 2| 3| ds|
| 3| ds| 3| 1| ht|
| 3| ds| 3| 4| ew|
| 4| ew| 4| 1| re|
| 1| re| 1| 2| as|
| 1| ht| 1| 2| as|
+---+---+---+---+---+
I don't think spark accepts the input as give by you(see below):
scala> df.drop(df_a.a).show()
<console>:30: error: value a is not a member of org.apache.spark.sql.DataFrame
df.drop(df_a.a).show()
^
scala> df.drop(df_a."a").show()
<console>:1: error: identifier expected but string literal found.
df.drop(df_a."a").show()
^
If you provide the input to drop, as below, it executes but will have no impact
scala> df.drop("df_a.a").show
+---+---+---+---+---+---+
| a| b| c| a| b| c|
+---+---+---+---+---+---+
| 1| 2| as| 2| 3| ds|
| 2| 3| ds| 3| 1| ht|
| 2| 3| ds| 3| 4| ew|
| 3| 4| ew| 4| 1| re|
| 4| 1| re| 1| 2| as|
| 3| 1| ht| 1| 2| as|
+---+---+---+---+---+---+
The reason being, spark interprets "df_a.a" as a nested column. As that column is not present ideally it should have thrown error, but as explained above, it just executes.
Hope this helps..!!!