I have a data.table as follows:
library(data.table)
set.seed(1)
DT <- data.table(panelID = sample(50,50), # Creates a panel ID
Country = c(rep("Albania",30),rep("Belarus",50), rep("Chilipepper",20)),
some_NA = sample(0:5, 6),
some_NA_factor = sample(0:5, 6),
Group = c(rep(1,20),rep(2,20),rep(3,20),rep(4,20),rep(5,20)),
Time = rep(seq(as.Date("2010-01-03"), length=20, by="1 month") - 1,5),
norm = round(runif(100)/10,2),
Income = sample(0:5, 6),
Happiness = sample(10,10),
Sex = round(rnorm(10,0.75,0.3),2),
Age = sample(100,100),
Educ = round(rnorm(10,0.75,0.3),2))
DT [, uniqueID := .I] # Creates a unique ID
DT[DT == 0] <- NA # https://stackoverflow.com/questions/11036989/replace-all-0-values-to-na
DT$some_NA_factor <- factor(DT$some_NA_factor)
Now, I would like to (for some artificial reason) sum the products of income & education and Sex & Age, for each observation using data.table. Please not that my actual data has way more variables, of which some are NA's. I tried:
DT<- setDT(DT)[, newvar:= sum((Income *Educ),
(Sex * Age), na.rm=TRUE)]
But that takes the sum of the columns. I also tried:
DT<- setDT(DT)[, newvar:= rowSums((Income *Educ),
(Sex * Age), na.rm=TRUE)]
But that does not work:
Error in base::rowSums(x, na.rm = na.rm, dims = dims, ...) :
'x' must be an array of at least two dimensions
What would be the correct way to do this in data.table?