create table dt
(
id varchar(20),
user_id int,
name varchar(20),
td DATE,
amount float
);
INSERT INTO dt VALUES('blah',1, 'Rodeo', '2018-01-20', 10.12);
INSERT INTO dt VALUES('blahblah',1, 'Rodeo', '2019-01-01', 40.44);
INSERT INTO dt VALUES('sas',2, 'Janice', '2018-02-05', 18.18);
INSERT INTO dt VALUES('dsdcd',3, 'Sam', '2019-01-26', 16.13);
INSERT INTO dt VALUES('sdc',2, 'Janice', '2018-02-01', 12.19);
INSERT INTO dt VALUES('scsc',2, 'Janice', '2017-12-06', 5.10);
+----------+---------+--------+------------+--------+
| id | user_id | name | td | amount |
+----------+---------+--------+------------+--------+
| blah | 1 | Rodeo | 2018-01-20 | 10.12 |
| blahblah | 1 | Rodeo | 2019-01-01 | 40.44 |
| sas | 2 | Janice | 2018-02-05 | 18.18 |
| dsdcd | 3 | Sam | 2019-01-26 | 16.13 |
| sdc | 2 | Janice | 2018-02-01 | 12.19 |
| scsc | 2 | Janice | 2017-12-06 | 5.1 |
+----------+---------+--------+------------+--------+
For the above table how i can get this output. I can achieve this by windowing function but not sure how to do this by correlated subquery. Appreciate any help!
Output Basically difference of users first transaction amount from their latest transaction amount. If the user has only one transaction then the difference is 0
User_id name amount
1 Rodeo 30.32 [40.44(latest trans) - 10.12 (min trans)]
3 Sam 0
2 Janice 13.08 [18.18 (latest trans) - 5.1 (min trans)]