I'm trying to figure out a tidyverse way to create a composite measure from existing columns. I don't understand why I'm getting an integer when trying to calculate an average using the mean() function.
I've read that using rowwise() is discouraged so I tried a solution using group_by().
library(tidyverse)
tstdata <- tibble(id=1:30
,fake1 = sample(c(1:7), replace = TRUE, size=30)
,fake2 = sample(c(1:7), replace = TRUE, size=30)
,fake3 = sample(c(1:7), replace = TRUE, size=30))
tstdata %>% mutate(fakeadd = fake1 + fake2 + fake3) -> tstdata
tstdata %>% group_by(id) %>% mutate(fakesum = sum(fake1,fake2,fake3)) %>% ungroup() -> tstdata
tstdata %>% mutate(fakeavg = (fake1+fake2+fake3)/3) -> tstdata
tstdata %>% group_by(id) %>% mutate(fakemean = mean(fake1,fake2,fake3)) %>% ungroup() -> tstdata
str(tstdata)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 30 obs. of 8 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ fake1 : int 6 5 6 7 6 6 5 3 4 3 ...
$ fake2 : int 7 5 4 6 7 7 5 6 6 5 ...
$ fake3 : int 1 2 2 1 3 7 2 1 4 6 ...
$ fakeadd : int 14 12 12 14 16 20 12 10 14 14 ...
$ fakesum : int 14 12 12 14 16 20 12 10 14 14 ...
$ fakeavg : num 4.67 4 4 4.67 5.33 ...
$ fakemean: int 6 5 6 7 6 6 5 3 4 3 ...
The sum() function used with group_by() gives the same result as my own formula. I'm confused by the results using the mean() function. I get integer values in that column that don't even seem to be rounded properly in some cases. I'd like to be able to handle missing data using na.rm. What am I missing? I have more experience with SPSS and I'm new to Tidyverse concepts.
I added a couple lines based on suggestions in comments:
library(tidyverse)
tstdata <- tibble(id=1:30
,fake1 = sample(c(1:7), replace = TRUE, size=30)
,fake2 = sample(c(1:7), replace = TRUE, size=30)
,fake3 = sample(c(1:7), replace = TRUE, size=30))
tstdata %>% mutate(fakeadd = fake1 + fake2 + fake3) -> tstdata
tstdata %>% group_by(id) %>% mutate(fakesum = sum(fake1,fake2,fake3)) %>% ungroup() -> tstdata
tstdata %>% mutate(fakeavg = (fake1+fake2+fake3)/3) -> tstdata
tstdata %>% group_by(id) %>% mutate(fakemean = mean(fake1,fake2,fake3)) %>% ungroup() -> tstdata
tstdata %>% mutate(fakerowmean = rowMeans(.[c(fake1,fake2,fake3)])) -> tstdata
tstdata %>% group_by(id) %>% mutate(fakemean3 = mean(c(fake1,fake2,fake3))) %>% ungroup() -> tstdata
str(tstdata)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 30 obs. of 10 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ fake1 : int 5 6 1 3 3 3 7 7 1 4 ...
$ fake2 : int 5 1 6 6 3 6 1 6 7 5 ...
$ fake3 : int 6 4 1 6 2 1 6 4 5 6 ...
$ fakeadd : int 16 11 8 15 8 10 14 17 13 15 ...
$ fakesum : int 16 11 8 15 8 10 14 17 13 15 ...
$ fakeavg : num 5.33 3.67 2.67 5 2.67 ...
$ fakemean : int 5 6 1 3 3 3 7 7 1 4 ...
$ fakerowmean: num 8.02 5.72 4.57 8.17 4.91 ...
$ fakemean3 : num 5.33 3.67 2.67 5 2.67 ...
Changing the arguments in the mean() function gives matching results now. I tried using rowMeans() the way it was formatted in the comments, but I don't know where those are coming from. They are not means of the 3 columns. Thank you for the quick comments!