My question is regarding the Novelty detection algorithms - Isolation Forest and One Class SVM. I have a training dataset(with 4-5 features) where all the sample points are inliers and I need to classify any new data as an inlier or outlier and ingest in another dataframe accordingly.
While trying to use Isolation Forest or One Class SVM, i have to input the contamination percentage(nu) during the training phase. However as the training dataset doesn't have any contamination, do I need to add outliers to the training dataframe and put that outlier fraction as nu.
Also while using the Isolation forest, I noticed that the outlier percentage changes everytime I predict, even though i don't change the model. Is there a way to take care of this problem apart from going into the Extended Isolation Forest algorithm.
Thanks in advance.