I'm training a neural network to act as a nonlinear controller. Basically, the ANN (F*) must provide a signal w = F*(u) that does B(G(w)) = G(u) for some dynamical model B.
To simulate systems and nonlinearities, I'm using Python Control, and using Keras to create a Sequential model:
# Creating model:
F = Sequential (name = 'compensator')
F.add (Dense (4, input_dim = 1, activation = 'linear', name = 'input_layer'))
F.add (Dense (4, activation = deadzoneInverse, name = 'dense_layer'))
F.add (Dense (1, activation = 'linear', name = 'output_layer'))
and adding another layer for simulation:
F.add (Dense (1, activation = simulation, name = 'simulation_layer'))
since simulation
is a custom function that uses Python Control modules, in special control.matlab.lsim
, it computations needs to be done in numpy arrays. The models/functions and Keras Tensors conversions can be done like:
for B inverse:
# NumPy function:
def _dstar (x):
y = x
if (x > 5. * eps) or (x < -5. * eps):
y = x
elif (x > eps):
y = x + a
elif (x < -eps):
y = x - a
else:
y = x * (1. + a / eps)
return np.reshape(y, (-1, 1))
# Keras conversion:
def deadzoneInverse (x):
x_array = K.eval(x)
y_array = _dstar (x)
return K.variable (y_array)
and for simulation:
def _simul (x):
x_array = x
t_array = np.linspace (0, currTime, int (currTime / Ts))
y_array, _, _ = cm.lsim (G, x_array, t_array)
y_array = B(y_array, t_array, a)
return y_array[-1]
def simulation (x):
x_array = K.eval(x)
y_value = _simul(x_array)
return K.variable (y_value)
But when I try to F.compile
, I get:
InvalidArgumentError: You must feed a value for placeholder tensor 'input_layer_input_14' with dtype float and shape [?,1]
[[Node: input_layer_input_14 = Placeholder[dtype=DT_FLOAT, shape=[?,1], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Is there a better way to implement these functions, even using Python Control (and, therefore, numPy arrays evaluated)?