I would like to compare pulse rate with whether people are left or right handed. The problem is that in my data only 18 people are left handed, where 218 are right handed. In trying to create a data frame, this is problematic, as both columns are not the same length. The error reads:
Error in data.frame(..., check.names = FALSE) : arguments imply differing number of rows: 18, 218.
Is there a way to fix this?
table(pulse)
pulse
35 40 48 50 54 55 56 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 78 79
1 1 2 2 1 1 1 1 12 1 4 1 9 6 6 1 16 1 13 2 14 1 5 5 13 4 3
80 81 83 84 85 86 87 88 89 90 92 96 97 98 100 104
18 1 4 5 4 3 2 4 1 8 6 3 1 1 2 2
table(whnd)
whnd
Left Right
18 218
left= collect[which(whnd=="Left"),]
left
left
sex wrspan nwspan whnd fold pulse clap exer smoke height units age
2 2 19.5 20.5 1 3 104 1 2 4 177.80 1 17.583
18 2 19.4 19.2 1 3 74 3 3 2 182.88 1 18.333
51 2 22.0 21.5 1 3 55 1 1 2 200.00 2 18.500
60 2 20.6 21.0 1 1 NA 1 1 3 175.26 1 18.417
64 1 18.7 18.0 1 1 NA 1 2 2 170.00 2 19.833
81 2 19.5 19.5 1 3 66 1 3 2 NA NA 16.750
90 1 18.0 17.7 1 3 92 1 3 2 NA NA 17.583
118 2 23.0 22.0 1 1 83 1 3 1 193.04 1 18.917
119 1 18.5 18.0 1 1 100 2 3 2 171.00 2 18.917
124 2 19.8 20.0 1 1 59 3 1 2 180.00 2 17.417
134 1 15.4 16.4 1 1 80 1 1 3 160.02 1 18.500
137 NA 19.8 19.0 1 1 73 2 1 2 172.00 2 21.500
145 1 20.0 19.5 1 3 68 2 1 2 172.00 2 19.167
162 2 18.1 18.2 1 2 NA 3 3 2 168.00 2 21.167
172 2 20.5 19.5 1 1 80 3 3 3 182.88 1 18.667
176 1 19.0 18.5 1 1 104 1 1 2 170.00 2 17.250
209 2 17.5 17.0 1 1 97 2 2 2 165.00 2 19.500
212 1 17.5 17.5 1 3 83 2 3 2 163.00 2 17.250
right= collect[which(whnd=="Right"),]
right
sex wrspan nwspan whnd fold pulse clap exer smoke height units age
1 1 18.5 18.0 2 3 92 1 3 2 173.00 2 18.250
3 2 18.0 13.3 2 1 87 2 2 3 NA NA 16.917
4 2 18.8 18.9 2 3 NA 2 2 2 160.00 2 20.333
5 2 20.0 20.0 2 2 35 3 3 2 165.00 2 23.667
6 1 18.0 17.7 2 1 64 3 3 2 172.72 1 21.000
7 2 17.7 17.7 2 1 83 3 1 2 182.88 1 18.833
8 1 17.0 17.3 2 3 74 3 1 2 157.00 2 35.833
9 2 20.0 19.5 2 3 72 3 3 2 175.00 2 19.000
10 2 18.5 18.5 2 3 90 3 3 2 167.00 2 22.333
11 1 17.0 17.2 2 1 80 3 1 2 156.20 1 28.500
12 2 21.0 21.0 2 3 68 1 1 2 NA NA 18.250
13 1 16.0 16.0 2 1 NA 3 3 2 155.00 2 18.750
14 1 19.5 20.2 2 1 66 2 3 2 155.00 2 17.500
15 2 16.0 15.5 2 3 60 3 3 2 NA NA 17.167
16 1 17.5 17.0 2 3 NA 3 1 2 156.00 2 17.167
17 1 18.0 18.0 2 1 89 2 1 2 157.00 2 19.333
19 2 20.5 20.5 2 1 NA 1 3 2 190.50 1 19.750
20 2 21.0 20.9 2 3 78 3 1 2 177.00 2 17.917
21 2 21.5 22.0 2 3 72 1 1 2 190.50 1 17.917
22 2 20.1 20.7 2 1 72 3 1 2 180.34 1 18.167
23 2 18.5 18.0 2 1 64 3 1 2 180.34 1 17.833
24 2 21.5 21.2 2 3 62 3 3 2 184.00 2 18.250
25 1 17.0 17.5 2 3 64 1 3 2 NA NA 19.167
26 2 18.5 18.5 2 2 90 2 3 2 NA NA 17.583
27 2 21.0 20.7 2 3 90 3 3 2 172.72 1 17.500
28 2 20.8 21.4 2 3 62 2 1 2 175.26 1 18.083
29 2 17.8 17.8 2 1 76 2 1 2 NA NA 21.917
30 2 19.5 19.5 2 1 79 3 3 2 167.00 2 19.250
31 1 18.5 18.0 2 3 76 3 2 3 NA NA 41.583
32 2 18.8 18.2 2 1 78 3 1 2 180.00 2 17.500
33 1 17.1 17.5 2 3 72 3 1 1 166.40 1 39.750
34 2 20.1 20.0 2 3 70 3 3 2 180.00 2 17.167
35 2 18.0 19.0 2 1 54 2 3 4 NA NA 17.750
36 2 22.2 21.0 2 1 66 3 1 3 190.00 2 18.000
37 1 16.0 16.5 2 1 NA 3 3 2 168.00 2 19.000
38 2 19.4 18.5 2 3 72 2 1 2 182.50 2 17.917
39 2 22.0 22.0 2 3 80 3 3 2 185.00 2 35.500
40 2 19.0 19.0 2 3 NA 2 1 3 171.00 2 19.917
41 1 17.5 16.0 2 1 NA 3 3 2 169.00 2 17.500
42 1 17.8 18.0 2 3 72 3 3 2 154.94 1 17.083
43 2 NA NA 2 3 60 NA 3 2 172.00 2 28.583
44 1 20.1 20.2 2 1 80 3 3 2 176.50 1 17.500
46 2 17.0 17.5 2 3 NA 2 1 2 180.34 1 18.500
47 2 23.2 22.7 2 1 84 1 1 4 180.00 2 18.917
48 2 22.5 23.0 2 3 96 3 2 2 170.00 2 19.417
49 1 18.0 17.6 2 3 60 3 3 3 168.00 2 18.417
50 1 18.0 17.9 2 3 50 1 2 2 165.00 2 30.750
52 2 20.5 20.0 2 1 68 3 1 2 190.00 2 17.500
53 2 17.0 18.0 2 1 78 1 3 2 170.18 1 18.333
54 2 20.5 19.5 2 1 56 3 1 2 179.00 2 17.417
55 2 22.5 22.5 2 3 65 3 1 4 182.00 2 20.000
56 2 18.5 18.5 2 1 NA 2 1 2 171.00 2 18.333
57 1 15.5 15.4 2 3 70 2 2 2 157.48 1 17.167
58 2 19.5 19.7 2 3 72 3 1 2 NA NA 17.417
59 2 19.5 19.0 2 1 62 3 1 2 177.80 1 17.667
61 2 22.8 23.2 2 3 66 2 1 2 187.00 2 20.333
62 1 18.5 18.2 2 3 72 2 1 2 167.64 1 17.333
63 1 19.6 19.7 2 1 70 3 1 2 178.00 2 17.500
65 1 17.3 18.0 2 1 64 2 1 2 164.00 2 18.583
66 2 19.5 19.8 2 2 NA 3 1 2 183.00 2 18.000
67 1 19.0 19.1 2 1 NA 2 1 2 172.00 2 30.667
68 1 18.5 18.0 2 3 64 3 1 2 NA NA 16.917
69 2 19.0 19.0 2 1 NA 3 3 2 180.00 2 19.917
70 2 21.0 19.5 2 1 80 1 2 NA NA NA 18.333
71 1 18.0 17.5 2 1 64 1 1 2 170.00 2 17.583
72 2 19.4 19.5 2 3 NA 3 1 1 176.00 2 17.833
73 1 17.0 16.6 2 3 68 3 3 2 171.00 2 17.667
74 1 16.5 17.0 2 1 40 1 1 2 167.64 1 17.417
75 1 15.6 15.8 2 3 88 1 3 2 165.00 2 17.750
76 1 17.5 17.5 2 2 68 3 1 1 170.00 2 20.667
77 1 17.0 17.6 2 1 76 3 3 2 165.00 2 23.583
78 1 18.6 18.0 2 1 NA 2 1 1 165.10 1 17.167
79 1 18.3 18.5 2 3 68 2 3 2 165.10 1 17.083
80 2 20.0 20.5 2 1 NA 3 1 2 185.42 1 18.750
82 2 19.2 18.9 2 3 76 3 1 2 176.50 1 20.167
83 1 17.5 17.5 2 3 98 1 1 2 NA NA 17.667
84 1 17.0 17.4 2 3 NA 2 3 2 NA NA 17.167
85 2 23.0 23.5 2 1 90 3 1 2 167.64 1 17.167
86 1 17.7 17.0 2 3 76 3 3 2 167.00 2 17.250
87 1 18.2 18.0 2 1 70 3 3 2 162.56 1 18.000
88 1 18.3 18.5 2 3 75 1 1 2 170.00 2 18.750
89 2 18.0 18.0 2 2 60 3 1 2 179.00 2 21.583
91 2 20.5 20.0 2 3 75 1 3 2 183.00 2 19.667
[ reached getOption("max.print") -- omitted 135 rows ]
hand=as.data.frame(cbind(left, right))
hand=as.data.frame(cbind(left, right))
Error in data.frame(..., check.names = FALSE) :
arguments imply differing number of rows: 18, 218